留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Geant4的α粒子能谱模拟研究及软件设计实现

刘敏俊 石睿 杨广 王博 王洲 曾雄 闫成杰

刘敏俊, 石睿, 杨广, 等. 基于Geant4的α粒子能谱模拟研究及软件设计实现[J]. 强激光与粒子束, 2023, 35: 126003. doi: 10.11884/HPLPB202335.230143
引用本文: 刘敏俊, 石睿, 杨广, 等. 基于Geant4的α粒子能谱模拟研究及软件设计实现[J]. 强激光与粒子束, 2023, 35: 126003. doi: 10.11884/HPLPB202335.230143
Liu Minjun, Shi Rui, Yang Guang, et al. Research and software design of α particle energy spectrum simulation based on Geant4[J]. High Power Laser and Particle Beams, 2023, 35: 126003. doi: 10.11884/HPLPB202335.230143
Citation: Liu Minjun, Shi Rui, Yang Guang, et al. Research and software design of α particle energy spectrum simulation based on Geant4[J]. High Power Laser and Particle Beams, 2023, 35: 126003. doi: 10.11884/HPLPB202335.230143

基于Geant4的α粒子能谱模拟研究及软件设计实现

doi: 10.11884/HPLPB202335.230143
基金项目: 国家自然科学基金项目(42074218); 国家自然科学基金区域创新发展联合基金重点项目(U19A2086);四川轻化工大学研究生创新基金项目(Y2022176)
详细信息
    作者简介:

    刘敏俊,2608467415@qq.com

    通讯作者:

    石 睿,shirui@suse.edu.cn

  • 中图分类号: TL814

Research and software design of α particle energy spectrum simulation based on Geant4

  • 摘要: 为进一步发展基于蒙特卡罗模拟方法的α粒子能谱探测参数优化技术,利用PyQt5设计一款调用蒙特卡罗模拟程序包Geant4进行α粒子能谱模拟研究的软件。一方面,建立了测量α粒子的钝化离子注入平面硅探测器(Passivated Implanted Planar Silicon)物理模型,根据实际α粒子测量条件对模拟的物理过程、模型材料及粒子源几何形状、成分等参数进行校正,结合PyQt5界面开发平台将粒子源参数、探测器参数修改等功能可视化。在多个探源距和不同真空压强条件下进行模拟实验,得到该模型的探测效率,并将获取的能量沉积成谱后,通过EMG-Landau响应函数模型展宽。另一方面,为验证该探测器模型的准确性,将模拟结果与实测结果的探测效率进行对比,实验结果表明,两者探测效率误差均在5%之内,且EMG-Landau响应函数模型展宽效果良好。本文研究结果验证了该Geant4模拟软件在α粒子能谱研究方面的可靠性,该软件可直观修改α粒子能谱测量条件,简化了模拟步骤,提高了模拟效率,为基于蒙特卡罗模拟方法的α粒子能谱探测参数优化技术提供了有力工具。
  • 图  1  几何因子计算示意图

    Figure  1.  Schematic diagram of geometry factor calculation

    图  2  整体研究方案

    Figure  2.  Integral research scheme

    图  3  PIPS-α谱仪腔室实物图

    Figure  3.  Photo of PIPS-α spectrometer chamber

    图  4  PIPS探测器物理模型

    Figure  4.  Physical model of the PIPS detector

    图  5  整体软件功能框图

    Figure  5.  Diagram of the software function

    图  6  软件模拟粒子技术路线

    Figure  6.  Technology line of simulation by the software

    图  7  软件主页面

    Figure  7.  Software main page

    图  8  功能界面

    Figure  8.  Functional interface

    图  9  响应函数模拟能谱展宽效果图

    Figure  9.  Diagram of response function simulated energy spectrum broadening effect

    图  10  238Pu四个大气压强下的Geant4模拟展宽图

    Figure  10.  Geant4 simulation stretching diagram of 238Pu under four atmospheres

    表  1  PIPS探测器腔室部件、尺寸和材料

    Table  1.   Components, dimensions and materials of PIPS detector chamber

    part material density/(g/cm3) inner radius/mm outer radius/mm half height/mm
    probe top stainless steel 8.06 0 8 3.655
    probe stainless steel 8.06 0 13.82 6.175
    tray aluminum 2.7 34 25.82 1
    sample tray stainless steel 8.06 0 12 0.25
    slot stick aluminum 2.7 34 1.15 1
    dead layer silicon 2.33 0 13.82 2.5×10−6
    silicon layer silicon 2.33 0 13.82 0.175
    rubber layer rubber 0.92 0 13.82 0.25
    brass layer brass 8.5 0 13.82 0.5
    polyethylene layer polyethylene 0.94 0 13.82 2
    下载: 导出CSV

    表  2  238Pu标准源探测效率实测值与Geant4模拟值的对比

    Table  2.   Comparison between measured value and Geant4 simulation value of detection efficiency of 238Pu standard source

    probing distance/mmmeasured detection efficiency/%analog detection efficiency/%analog detection efficiency range/%relative bias/%
    2.839.5538.6238.42~38.812.41
    6.827.1827.3727.04~27.650.69
    10.818.6318.4318.35~18.541.08
    14.813.0713.2813.25~13.311.58
    18.89.479.349.27~9.411.39
    下载: 导出CSV
  • [1] 许阳阳, 庹先国, 石睿, 等. PIPS-α谱仪探测效率蒙特卡罗模拟及其影响因素[J]. 强激光与粒子束, 2017, 29(10):155-160 doi: 10.11884/HPLPB201729.170108

    Xu Yangyang, Tou Xianguo, Shi Rui, et al. Monte Carlo simulation of detection efficiency of PIPS-α spectrometer and its influencing factors[J]. High Power Laser and Particle Beams, 2017, 29(10): 155-160 doi: 10.11884/HPLPB201729.170108
    [2] Rui Shi, Xianguo Tuo, Jian Bo Yang, et al. A peak shape model with high-energy tailing for high-resolution alpha-particle spectra[J]. European Physical Journal A, 2019, 55(8): 138-144.
    [3] 刘江平, 陈强, 王志新, 等. 10 MeV工业辐照电子加速器GEANT4计算和工艺界面软件开发[J]. 辐射研究与辐射工艺学报, 2022, 40(06):62-69

    Liu Jiangping, Chen Qiang, Wang Zhixin, et al. Computational and process interface software development for 10 MeV industrial irradiation electron accelerator GEANT4[J]. Journal of Radiation Research and Radiation Technology, 2022, 40(06): 62-69
    [4] 温小江, 张志远, 周厚兵, 等. 充气反冲核谱仪焦平面探测阵列的GEANT4模拟[J]. 原子核物理评论, 2021, 38(04):423-429

    Wen Xiaojiang, Zhang Zhiyuan, Zhou Houbing, et al. GEANT4 simulation of the focal plane detection array of gas-filled recoil nuclear spectrometer[J]. Review of Atomic Nuclear Physics, 2021, 38(04): 423-429
    [5] Díaz-Francés J A, Cortés-Giraldo M A, Jiménez-Ramos M C, et al. Simulation of the response of a PIPS detector using GEANT4 code[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 875: 21-26.
    [6] Moslehi A, Baradaran S, Taheri M. GEANT4 modeling of alpha particles detection efficiency for polycarbonate SSNTD[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1033: 166714.
    [7] 宋海声, 庞荣妮, 蔡啸. 基于MC模拟研究锗死层对高纯锗探测效率的影响[J/OL]. 激光与光电子学进展: 1-10[2023-04-20]. http://kns.cnki.net/kcms/detail/31.1690.tn.20230207.1629.068.html

    Song Haisheng, Pang Rongni, Cai Xiao. MC simulation-based study of the effect of germanium dead layer on the detection efficiency of high-purity germanium [J/OL]. Advances in Lasers and Optoelectronics: 1-10 [2023-04-20]. http://kns.cnki.net/kcms/detail/31.1690.tn.20230207.1629.068.html.
    [8] Wei Tang, Jin-Gang Liang, Yi Ge. et al. A method for neutron-induced gamma spectra decomposition analysis based on Geant4 simulation[J]. Nuclear Science and Techniques, 2022, 33(12): 38-50.
    [9] Khan A U, DeWerd L A. Evaluation of the GEANT4 transport algorithm and radioactive decay data for alpha particle dosimetry[J]. Applied Radiation and Isotopes, 2021, 176: 109849. doi: 10.1016/j.apradiso.2021.109849
    [10] 陈章诺, 郭玉辉, 詹泰鑫, 等. 新型LEAF装置控制软件设计[J]. 核电子学与探测技术, 2020, 40(01):60-64 doi: 10.3969/j.issn.0258-0934.2020.01.012

    Chen Zhangnuo, Guo Yuhui, Zhan Taixin, et al. Design of control software for a new LEAF device[J]. Nuclear Electronics and Detection Technology, 2020, 40(01): 60-64 doi: 10.3969/j.issn.0258-0934.2020.01.012
    [11] 赵志远, 宋昭, 王晓山, 等. 基于PyQt5的地震动参数计算软件设计[J]. 华北地震科学, 2022, 40(4):7-11

    Zhao Zhiyuan, Song Zhao, Wang Xiaoshan, et al. Design of calculation software for ground motion parameters based on PyQt5[J]. North China Earthquake Science, 2022, 40(4): 7-11
    [12] Mendoza E, Cano-Ott D, Romojaro P, et al. Neutron production induced by α-decay with Geant4[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 960: 163659.
    [13] Incerti S, Gault N, Habchi C, et al. A comparison of cellular irradiation techniques with alpha particles using the Geant4 Monte Carlo simulation toolkit[J]. Radiation Protection Dosimetry, 2006, 122(1-4): 327-329. doi: 10.1093/rpd/ncl422
    [14] Pöllänen R. Performance of an in-situ alpha spectrometer[J]. Applied Radiation and Isotopes, 2016, 109: 193-197. doi: 10.1016/j.apradiso.2015.11.110
    [15] Shi R, Tuo X, Cheng Y, et al. Applications of non-negative iterative deconvolution method in the analysis of alpha-particle spectra[J]. The European Physical Journal Plus, 2020, 135(2): 225. doi: 10.1140/epjp/s13360-020-00100-9
    [16] Tian Feng, Geng Changran, Tang Xiaobin, et al. Proton range monitoring based on picosecond detection using a Cherenkov radiation detector: A Monte Carlo study[J]. Applied Radiation and Isotopes, 2022, 180.
    [17] Shao Jiang, Zhu Keyong, Liu Xiaochuan, et al. A general Monte Carlo method for polarized radiative transfer in multi-dimensional graded-index media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 278.
    [18] Hao J, Ho T K. Machine learning made easy: a review of Scikit-learn package in python programming language[J]. Journal of Educational and Behavioral Statistics, 2019, 44(3): 348-361. doi: 10.3102/1076998619832248
    [19] 张罡, 何小中, 杜洋, 等. 基于Geant4的回旋加速器束流动力学计算[J]. 强激光与粒子束, 2022, 34(07):10-15 doi: 10.11884/HPLPB202234.210458

    Zhang Gang, He Xiaozhong, Du Yang, et al. Cyclotron beam dynamics calculation based on Geant4[J]. High Power Laser and Particle Beams, 2022, 34(07): 10-15 doi: 10.11884/HPLPB202234.210458
    [20] Lee P, Kang N W. Comparison study of MCNP6 and GEANT4 for neutron transportation and detection in 3He Long Counter[J]. Journal of the Physical Society of Japan, 2023, 92(2): 024201. doi: 10.7566/JPSJ.92.024201
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  600
  • HTML全文浏览量:  306
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-20
  • 修回日期:  2023-08-14
  • 录用日期:  2023-08-24
  • 网络出版日期:  2023-11-07
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回