留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种宽带瓦量级交错双栅脊波导返波振荡器的研究

冯霖琦 岳玲娜 徐进 蔡金赤 殷海荣 魏彦玉 尹鹏程 王文祥 邓峥嵘

冯霖琦, 岳玲娜, 徐进, 等. 一种宽带瓦量级交错双栅脊波导返波振荡器的研究[J]. 强激光与粒子束, 2023, 35: 123001. doi: 10.11884/HPLPB202335.230150
引用本文: 冯霖琦, 岳玲娜, 徐进, 等. 一种宽带瓦量级交错双栅脊波导返波振荡器的研究[J]. 强激光与粒子束, 2023, 35: 123001. doi: 10.11884/HPLPB202335.230150
Feng Linqi, Yue Lingna, Xu Jin, et al. Investigation of a wide band watt level backward wave oscillator based on ridged double staggered grating waveguide[J]. High Power Laser and Particle Beams, 2023, 35: 123001. doi: 10.11884/HPLPB202335.230150
Citation: Feng Linqi, Yue Lingna, Xu Jin, et al. Investigation of a wide band watt level backward wave oscillator based on ridged double staggered grating waveguide[J]. High Power Laser and Particle Beams, 2023, 35: 123001. doi: 10.11884/HPLPB202335.230150

一种宽带瓦量级交错双栅脊波导返波振荡器的研究

doi: 10.11884/HPLPB202335.230150
基金项目: 四川省自然科学基金面上项目(2023NSFSC045)
详细信息
    作者简介:

    冯霖琦,313819167@qq.com

    通讯作者:

    岳玲娜,lnyue@uestc.edu.cn

  • 中图分类号: TN125+.1

Investigation of a wide band watt level backward wave oscillator based on ridged double staggered grating waveguide

  • 摘要: 为满足太赫兹领域对大功率、宽带宽的太赫兹辐射源的需求,提出了一种新型交错双栅脊波导(RDSG)慢波结构。设计并优化了交错双栅脊波导返波振荡器的高频结构,同时对交错双栅脊波导和常规交错双栅的高频特性进行了仿真和对比,结果表明:当二者相速度接近时,交错双栅脊波导拥有更宽的“冷”通带带宽和更高的耦合阻抗。PIC仿真结果表明,在1 THz频段,交错双栅脊波导返波振荡器拥有超过175 GHz的可调谐带宽以及1.1 W的输出功率,比相同工作条件下的常规交错双栅结构输出功率了提高34%~42%。
  • 图  1  交错双栅脊波导三维结构及尺寸示意图

    Figure  1.  Schematic diagram of RDSG model structure and dimensions

    图  2  1.03 THz处交错双栅脊波导和常规交错双栅的电场Ez分布图

    Figure  2.  Distribution of electric field Ez at the typical frequency of 1.03 THz of RDSG-SWS and DSG-SWS

    图  3  交错双栅脊波导和常规交错双栅布里渊曲线及归一化相速度曲线图

    Figure  3.  Brillouin curves and normalized phase velocity of RDSG-SWS and DSG-SWS

    图  4  交错双栅脊波导和常规交错双栅耦合阻抗对比

    Figure  4.  Interaction impedance of RDSG-SWS and DSG-SWS

    图  5  CST MWS中交错双栅脊波导时域求解器模型.

    Figure  5.  Time-transient solver calculation model in CST MWS

    图  6  交错双栅脊波导的传输特性

    Figure  6.  Transmission properties of RDSG

    图  7  26 kV电子注电压下PIC仿真结果示意图

    Figure  7.  PIC simulation results of 26 kV beam voltage

    图  8  交错双栅脊波导及常规交错双栅返波振荡器的输出功率、起振频率及电压关系示意图

    Figure  8.  Frequency versus beam voltage and output power versus frequency of RDSG-SWS and DSG-SWS BWO

    表  1  交错双栅脊波导参数

    Table  1.   Parameters of RDSG-SWS unit: µm

    length of SWS z width of SWS a width of grating l period length p height of grating h thickness of grating g height of beam channel 2b
    125 180 90 55 50 13.75 25
    下载: 导出CSV
  • [1] 丁耀根, 刘濮鲲, 张兆传, 等. 大功率微波真空电子器件的应用[J]. 强激光与粒子束, 2011, 23(8):1989-1995 doi: 10.3788/HPLPB20112308.1989

    Ding Yaogen, Liu Pukun, Zhang Zhaochuan, et al. Application of high power microwave vacuum electron devices[J]. High Power Laser and Particle Beams, 2011, 23(8): 1989-1995 doi: 10.3788/HPLPB20112308.1989
    [2] Wang Zhanliang, Zhou Qing, Gong Huarong, et al. Development of a 140-GHz folded-waveguide traveling-wave tube in a relatively larger circular electron beam tunnel[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(17): 1914-1923. doi: 10.1080/09205071.2017.1341346
    [3] Sudhamani H S, Balakrishnan J, Reddy S U M. Investigation of instabilities in a folded-waveguide sheet-beam TWT[J]. IEEE Transactions on Electron Devices, 2017, 64(10): 4266-4271. doi: 10.1109/TED.2017.2736065
    [4] Tian Yanyan, Yue Lingna, Xu Jin, et al. A novel slow-wave structure—Folded rectangular groove waveguide for millimeter-wave TWT[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 510-515. doi: 10.1109/TED.2011.2175929
    [5] Tian Yanyan, Yue Lingna, Zhou Qing, et al. Investigation on sheet beam folded V-shape groove waveguide for millimeter-wave TWT[J]. IEEE Transactions on Plasma Science, 2016, 44(8): 1363-1368. doi: 10.1109/TPS.2016.2582505
    [6] Shin Y M, Barnett L R, Luhmann N C. Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 706-712. doi: 10.1109/TED.2009.2015404
    [7] Shin Y M, Baig A, Barnett L R, et al. System design analysis of a 0.22-THz sheet-beam traveling-wave tube amplifier[J]. IEEE Transactions on Electron Devices, 2012, 59(1): 234-240. doi: 10.1109/TED.2011.2173575
    [8] 赖剑强. 交错双栅慢波结构的应用研究[D]. 成都: 电子科技大学, 2012: 69-90

    Lai Jianqiang. Research on applications of staggered double vane slow-wave structure[D]. Chengdu: University of Electronic Science and Technology of China, 2012: 69-90
    [9] 王海龙, 石先宝, 王战亮, 等. W波段阶梯型交错双栅慢波结构行波管的研究[J]. 红外与毫米波学报, 2018, 37(6):784-789

    Wang Hailong, Shi Xianbao, Wang Zhanliang, et al. Research on W band step-type staggered double vane slow wave structure traveling wave tube[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 784-789
    [10] 赖剑强, 魏彦玉, 黄民智, 等. W波段交错双栅返波振荡器高频系统[J]. 强激光与粒子束, 2012, 24(9):2164-2168 doi: 10.3788/HPLPB20122409.2164

    Lai Jianqiang, Wei Yanyu, Huang Minzhi, et al. RF circuit for W-band staggered double vane backward wave oscillator[J]. High Power Laser and Particle Beams, 2012, 24(9): 2164-2168 doi: 10.3788/HPLPB20122409.2164
    [11] Baig A, Gamzina D, Barchfeld R, et al. 0.22 THz wideband sheet electron beam traveling wave tube amplifier: cold test measurements and beam wave interaction analysis[J]. Physics of Plasmas, 2012, 19: 093110. doi: 10.1063/1.4750048
    [12] Lai Jianqiang, Gong Yubin, Xu Xiong, et al. W-band 1-kW staggered double-vane traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 496-503. doi: 10.1109/TED.2011.2174458
    [13] Lu Zhigang, Ding Kesen, Wen Ruidong, et al. Novel double tunnel staggered grating slow wave structure for 0.2 THz traveling wave tube[J]. IEEE Electron Device Letters, 2020, 41(2): 284-287. doi: 10.1109/LED.2019.2963686
    [14] Xu Xiong, Wei Yanyu, Shen Fei, et al. A watt-class 1-THz backward-wave oscillator based on sine waveguide[J]. Physics of Plasmas, 2012, 19: 013113. doi: 10.1063/1.3677889
    [15] 张鲁奇, 魏彦玉, 高宇航, 等. G波段正弦波导行波管的设计和研究[C]//2016真空电子学分会第二十届学术年会论文集(上). 2016: 308-311

    Zhang Luqi, Wei Yanyu, Gao Yuhang, et al. Design and study of G-band sine waveguide traveling wave tube[C]//Proceedings of the 20th Annual Conference of Vacuum Electronics Branch (Part 1). 2016: 308-311
    [16] Zhang Luqi, Wei Yanyu, Wang Bing, et al. Investigation of 0.38 THz backward-wave oscillator based on slotted sine waveguide and pencil electron beam[J]. Physics of Plasmas, 2016, 23: 033111. doi: 10.1063/1.4943410
    [17] Yang Ruichao, Xu Jin, Yin Pengcheng, et al. Study on 1-THz sine waveguide traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2509-2514. doi: 10.1109/TED.2021.3069447
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  60
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-10-23
  • 录用日期:  2023-08-28
  • 网络出版日期:  2023-10-27
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回