Investigation of a wide band watt level backward wave oscillator based on ridged double staggered grating waveguide
-
摘要: 为满足太赫兹领域对大功率、宽带宽的太赫兹辐射源的需求,提出了一种新型交错双栅脊波导(RDSG)慢波结构。设计并优化了交错双栅脊波导返波振荡器的高频结构,同时对交错双栅脊波导和常规交错双栅的高频特性进行了仿真和对比,结果表明:当二者相速度接近时,交错双栅脊波导拥有更宽的“冷”通带带宽和更高的耦合阻抗。PIC仿真结果表明,在1 THz频段,交错双栅脊波导返波振荡器拥有超过175 GHz的可调谐带宽以及1.1 W的输出功率,比相同工作条件下的常规交错双栅结构输出功率了提高34%~42%。
-
关键词:
- 太赫兹 /
- 宽带大功率返波振荡器 /
- 新型慢波结构 /
- 交错双栅脊波导 /
- 仿真计算
Abstract: A novel ridged double staggered grating (RDSG) slow wave structure (SWS) is put forward to develop the wide-band and high-power terahertz radiation source for meeting the demand of thriving field of terahertz. The high frequency structure of backward wave oscillator (BWO) is designed and optimized, meanwhile high frequency characteristics of RDSG and double staggered grating (DSG) are simulated and compared, indicating that RDSG has a higher ‘cold’ bandwidth and more prominent interaction impedance when their phase velocity are adjusted to basically the same. PIC simulation results show that, ridged double staggered grating backward wave oscillator has a tunable bandwidth more than 175 GHz, and it can generate more than 1.1 W output power which is 34%~42% higher than BWO implemented with conventional DSG in the frequency range around 1 THz. -
表 1 交错双栅脊波导参数
Table 1. Parameters of RDSG-SWS
unit: µm length of SWS z width of SWS a width of grating l period length p height of grating h thickness of grating g height of beam channel 2b 125 180 90 55 50 13.75 25 -
[1] 丁耀根, 刘濮鲲, 张兆传, 等. 大功率微波真空电子器件的应用[J]. 强激光与粒子束, 2011, 23(8):1989-1995 doi: 10.3788/HPLPB20112308.1989Ding Yaogen, Liu Pukun, Zhang Zhaochuan, et al. Application of high power microwave vacuum electron devices[J]. High Power Laser and Particle Beams, 2011, 23(8): 1989-1995 doi: 10.3788/HPLPB20112308.1989 [2] Wang Zhanliang, Zhou Qing, Gong Huarong, et al. Development of a 140-GHz folded-waveguide traveling-wave tube in a relatively larger circular electron beam tunnel[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(17): 1914-1923. doi: 10.1080/09205071.2017.1341346 [3] Sudhamani H S, Balakrishnan J, Reddy S U M. Investigation of instabilities in a folded-waveguide sheet-beam TWT[J]. IEEE Transactions on Electron Devices, 2017, 64(10): 4266-4271. doi: 10.1109/TED.2017.2736065 [4] Tian Yanyan, Yue Lingna, Xu Jin, et al. A novel slow-wave structure—Folded rectangular groove waveguide for millimeter-wave TWT[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 510-515. doi: 10.1109/TED.2011.2175929 [5] Tian Yanyan, Yue Lingna, Zhou Qing, et al. Investigation on sheet beam folded V-shape groove waveguide for millimeter-wave TWT[J]. IEEE Transactions on Plasma Science, 2016, 44(8): 1363-1368. doi: 10.1109/TPS.2016.2582505 [6] Shin Y M, Barnett L R, Luhmann N C. Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 706-712. doi: 10.1109/TED.2009.2015404 [7] Shin Y M, Baig A, Barnett L R, et al. System design analysis of a 0.22-THz sheet-beam traveling-wave tube amplifier[J]. IEEE Transactions on Electron Devices, 2012, 59(1): 234-240. doi: 10.1109/TED.2011.2173575 [8] 赖剑强. 交错双栅慢波结构的应用研究[D]. 成都: 电子科技大学, 2012: 69-90Lai Jianqiang. Research on applications of staggered double vane slow-wave structure[D]. Chengdu: University of Electronic Science and Technology of China, 2012: 69-90 [9] 王海龙, 石先宝, 王战亮, 等. W波段阶梯型交错双栅慢波结构行波管的研究[J]. 红外与毫米波学报, 2018, 37(6):784-789Wang Hailong, Shi Xianbao, Wang Zhanliang, et al. Research on W band step-type staggered double vane slow wave structure traveling wave tube[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 784-789 [10] 赖剑强, 魏彦玉, 黄民智, 等. W波段交错双栅返波振荡器高频系统[J]. 强激光与粒子束, 2012, 24(9):2164-2168 doi: 10.3788/HPLPB20122409.2164Lai Jianqiang, Wei Yanyu, Huang Minzhi, et al. RF circuit for W-band staggered double vane backward wave oscillator[J]. High Power Laser and Particle Beams, 2012, 24(9): 2164-2168 doi: 10.3788/HPLPB20122409.2164 [11] Baig A, Gamzina D, Barchfeld R, et al. 0.22 THz wideband sheet electron beam traveling wave tube amplifier: cold test measurements and beam wave interaction analysis[J]. Physics of Plasmas, 2012, 19: 093110. doi: 10.1063/1.4750048 [12] Lai Jianqiang, Gong Yubin, Xu Xiong, et al. W-band 1-kW staggered double-vane traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 496-503. doi: 10.1109/TED.2011.2174458 [13] Lu Zhigang, Ding Kesen, Wen Ruidong, et al. Novel double tunnel staggered grating slow wave structure for 0.2 THz traveling wave tube[J]. IEEE Electron Device Letters, 2020, 41(2): 284-287. doi: 10.1109/LED.2019.2963686 [14] Xu Xiong, Wei Yanyu, Shen Fei, et al. A watt-class 1-THz backward-wave oscillator based on sine waveguide[J]. Physics of Plasmas, 2012, 19: 013113. doi: 10.1063/1.3677889 [15] 张鲁奇, 魏彦玉, 高宇航, 等. G波段正弦波导行波管的设计和研究[C]//2016真空电子学分会第二十届学术年会论文集(上). 2016: 308-311Zhang Luqi, Wei Yanyu, Gao Yuhang, et al. Design and study of G-band sine waveguide traveling wave tube[C]//Proceedings of the 20th Annual Conference of Vacuum Electronics Branch (Part 1). 2016: 308-311 [16] Zhang Luqi, Wei Yanyu, Wang Bing, et al. Investigation of 0.38 THz backward-wave oscillator based on slotted sine waveguide and pencil electron beam[J]. Physics of Plasmas, 2016, 23: 033111. doi: 10.1063/1.4943410 [17] Yang Ruichao, Xu Jin, Yin Pengcheng, et al. Study on 1-THz sine waveguide traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2509-2514. doi: 10.1109/TED.2021.3069447