[1] |
Takeiri Y. Negative ion source development for fusion application (invited)[J]. Review of Scientific Instruments, 2010, 81: 02B114. doi: 10.1063/1.3274806
|
[2] |
Kashiwagi M, Hiratsuka J, Ichikawa M, et al. 100 s negative ion accelerations for the JT–60SA negative-ion-based neutral beam injector[J]. Nuclear Fusion, 2022, 62: 026025. doi: 10.1088/1741-4326/ac388a
|
[3] |
Tsumori K, Ikeda K, Kisaki M, et al. Challenges toward improvement of deuterium-injection power in the Large Helical Device negative-ion-based NBIs[J]. Nuclear Fusion, 2022, 62: 056016. doi: 10.1088/1741-4326/ac2d59
|
[4] |
Hemsworth R S, Boilson D, Blatchford P, et al. Overview of the design of the ITER heating neutral beam injectors[J]. New Journal of Physics, 2017, 19: 025005. doi: 10.1088/1367-2630/19/2/025005
|
[5] |
Xie Yanghong, Hu Chundong, Wei Jianglong, et al. Conceptual design of a beam source for negative neutral beam injector of CRAFT facility[J]. Fusion Engineering and Design, 2021, 167: 112377. doi: 10.1016/j.fusengdes.2021.112377
|
[6] |
Bacal M, Wada M. Negative hydrogen ion production mechanisms[J]. Applied Physics Reviews, 2015, 2: 021305. doi: 10.1063/1.4921298
|
[7] |
Wei Jianglong, Hu Chundong, Xie Yahong, et al. Physics and engineering design of 400 keV H– accelerator for negative ion based neutral beam injection system in China[J]. Review of Scientific Instruments, 2019, 90: 113313. doi: 10.1063/1.5128335
|
[8] |
Wei Jianglong, Yang Yuwen, Gu Yuming, et al. An integration design model for a large-scale negative ion accelerator of neutral beam injection system for fusion application[J]. Physics of Plasmas, 2023, 30: 033102. doi: 10.1063/5.0139827
|
[9] |
Brown I G. The physics and technology of ion sources[M]. 2nd ed. Weinhein, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2004.
|
[10] |
Pamela J. A model for negative ion extraction and comparison of negative ion optics calculations to experimental results[J]. Review of Scientific Instruments, 1991, 62(5): 1163-1172. doi: 10.1063/1.1141995
|
[11] |
Becker R. NIGUN: A two-dimensional simulation program for the extraction of H− ions[J]. Review of Scientific Instruments, 2004, 75(5): 1723-1725. doi: 10.1063/1.1695610
|
[12] |
Kalvas T, Tarvainen O, Ropponen T, et al. IBSIMU: a three-dimensional simulation software for charged particle optics[J]. Review of Scientific Instruments, 2010, 81: 02B703. doi: 10.1063/1.3258608
|
[13] |
王惠三, 简广德, 周才品. 高能强流负离子束系统束光学特性的数值模拟[J]. 核聚变与等离子体物理, 2000, 20(2):93-99 doi: 10.3969/j.issn.0254-6086.2000.02.005Wang Huisan, Jian Guangde, Zhou Caipin. Numerical simulation of the beam optics characteristics in a high energy and high current negative ion beam system[J]. Nuclear Fusion and Plasma Physics, 2000, 20(2): 93-99 doi: 10.3969/j.issn.0254-6086.2000.02.005
|
[14] |
De Esch H P L, Kashiwagi M, Taniguchi M, et al. Physics design of the HNB accelerator for ITER[J]. Nuclear Fusion, 2015, 55: 096001. doi: 10.1088/0029-5515/55/9/096001
|
[15] |
Agostinetti P, Aprile D, Antoni V, et al. Detailed design optimization of the MITICA negative ion accelerator in view of the ITER NBI[J]. Nuclear Fusion, 2016, 56: 016015. doi: 10.1088/0029-5515/56/1/016015
|
[16] |
Wimmer C, Schiesko L, Fantz U. Investigation of the boundary layer during the transition from volume to surface dominated H− production at the BATMAN test facility[J]. Review of Scientific Instruments, 2016, 87: 02B310. doi: 10.1063/1.4932985
|
[17] |
Kisaki M, Tsumori K, Ikeda K, et al. Characteristics of plasma grid bias in large-scaled negative ion source[J]. Review of Scientific Instruments, 2014, 85: 02B131. doi: 10.1063/1.4854295
|
[18] |
Kojima A, Hanada M, Tanaka Y, et al. Achievement of 500 keV negative ion beam acceleration on JT-60U negative-ion-based neutral beam injector[J]. Nuclear Fusion, 2011, 51: 083049. doi: 10.1088/0029-5515/51/8/083049
|