留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双色镜光谱合成9.6 kW合成光源

孙儒峰 张昆 张利明 张雪霞 吴佟 赵鸿

孙儒峰, 张昆, 张利明, 等. 基于双色镜光谱合成9.6 kW合成光源[J]. 强激光与粒子束, 2023, 35: 121004. doi: 10.11884/HPLPB202335.230191
引用本文: 孙儒峰, 张昆, 张利明, 等. 基于双色镜光谱合成9.6 kW合成光源[J]. 强激光与粒子束, 2023, 35: 121004. doi: 10.11884/HPLPB202335.230191
Sun Rufeng, Zhang Kun, Zhang Liming, et al. 9.6 kW combined light source using dichroic-mirror-based spectral beam combining[J]. High Power Laser and Particle Beams, 2023, 35: 121004. doi: 10.11884/HPLPB202335.230191
Citation: Sun Rufeng, Zhang Kun, Zhang Liming, et al. 9.6 kW combined light source using dichroic-mirror-based spectral beam combining[J]. High Power Laser and Particle Beams, 2023, 35: 121004. doi: 10.11884/HPLPB202335.230191

基于双色镜光谱合成9.6 kW合成光源

doi: 10.11884/HPLPB202335.230191
基金项目: 固体激光技术重点实验室基金项目(H202201030941)
详细信息
    作者简介:

    孙儒峰,1659584741@qq.com

    通讯作者:

    张 昆,nukzhang@163.com

  • 中图分类号: O43

9.6 kW combined light source using dichroic-mirror-based spectral beam combining

  • 摘要: 通过光纤激光光谱合成技术,可以打破单个光纤激光器输出功率受非线性因素制约的限制,实现更高功率的激光输出。通过梳理光谱合成技术的发展历程并分析其现状,对其原理及优劣势进行分析,结合自身研究,设计了一款便携式3路合成系统,通过设计及优化光纤激光器的放大结构,严格把控参与合束的子束光源的质量,将1055、1070和1085 nm三路高功率窄线宽光纤激光进行合束,对合成系统中采用的双色镜进行研究,对其膜系指标进行严格的设计,对高陡度截止滤光膜的设计方法以及制备工艺进行分析,对其热损伤规律及控制技术进行研究,优化整个合成系统,最终实现合成功率9650 W的高功率激光输出,合成效率92%,光束质量M2为1.7,并对未来双色镜光谱合成进行了展望。
  • 图  1  合成系统示意图

    Figure  1.  Schematic diagram of the combining system

    图  2  3.5 kW窄线宽光纤激光器原理示意图

    Figure  2.  Schematic diagram of the 3.5 kW narrow linewidth fiber laser

    图  3  高陡度分光薄膜的设计光谱

    Figure  3.  Design spectrum of high steepness beam split films

    图  4  激光损伤阈值测试示意图

    Figure  4.  Schematic diagram of the optical damage threshold test of coatings

    图  5  温度变化情况以及显微镜下的观测结果

    Figure  5.  Temperature variation on surface of the coatings and observations results

    图  6  输出激光激光光谱

    Figure  6.  Output laser spectrum

    图  7  最高输出功率下的激光光斑和不同功率下的光束质量

    Figure  7.  Output laser spot image and beam quality factor

    图  8  合成激光功率以及效率变化曲线

    Figure  8.  Variation of combined output power and combination efficiency

    表  1  双色镜合成相关参数对比

    Table  1.   Comparison of parameters related to bicolor mirror combination

    year authors power/kW beam quality combined efficiency/%
    2015 Zhou Taidou et al 2.50 Mx2=4.21
    My2=2.83
    /
    2016 Zhou Taidou et al 0.72 M2=1.54 94
    2019 K. Ludewight et al 5.90 M2=1.90 /
    2019 Ma Jun et al 10.25 Mx2≈12.00,My2>14.00 98
    下载: 导出CSV
  • [1] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279
    [2] Zhou Pujun, Wang Xianliang, Xiao Huadong, et al. Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges[J]. Laser Physics, 2012, 22(5): 823-831. doi: 10.1134/S1054660X12050404
    [3] Shi Wei, Schulzgen A, Amezcua R, et al. Fiber lasers and their applications: introduction[J]. Journal of the Optical Society of America B, 2017, 34(3): FLA1. doi: 10.1364/JOSAB.34.00FLA1
    [4] Buikema A, Jose F, Augst S J, et al. Narrow-linewidth fiber amplifier for gravitational-wave detectors[J]. Optics Letters, 2019, 44(15): 3833-3836. doi: 10.1364/OL.44.003833
    [5] Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654. doi: 10.1364/OE.19.018645
    [6] Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Optics Express, 2013, 21(2): 1944-1971. doi: 10.1364/OE.21.001944
    [7] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192. doi: 10.1364/OE.19.010180
    [8] Uberna R, Bratcher A, Tiemann B G. Coherent polarization beam combination[J]. IEEE Journal of Quantum Electronics, 2010, 46(8): 1191-1196. doi: 10.1109/JQE.2010.2044976
    [9] 马鹏飞, 马阎星, 粟荣涛, 等. 8 kW级光纤激光优质高效相干合成(简讯)[J]. 红外与激光工程, 2020, 49:20190577 doi: 10.3788/irla.32_2019-0577

    Ma Pengfei, Ma Yanxing, Su Rongtao, et al. High quality and efficient coherent combined of 8 kW fiber laser[J]. Infrared and Laser Engineering, 2020, 49: 20190577 doi: 10.3788/irla.32_2019-0577
    [10] Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam for material processing[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 1126021.
    [11] Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency, and brightness[C]//Proceedings of SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications. 2012: 860115.
    [12] Von Elm R, Marois C. Beam-combiner for fiber-delivered laser-beams of different wavelengths: 9075237[P]. 2015-07-07.
    [13] Pan Hui. Lockheed Martin readies 60 kW fiber laser weapon for U. S. army[J]. Fiber Optics & Communications: Monthly Newsletter Lovering Domestic & International News on Fiber Optic Communications and Related Fields, 2017, 40(3): 8-9.
    [14] Strecker M, Plötner M, Stutzki F, et al. Highly efficient dual-grating 3-channel spectral beam combining of narrow-linewidth monolithic cw Yb-doped fiber amplifiers up to 5.5 kW[C]//Proceedings of SPIE 10897, Fiber Lasers XVI: Technology and Systems. 2019: 108970E.
    [15] 郑也, 杨依枫, 赵翔, 等. 高功率光纤激光光谱合成技术的研究进展[J]. 中国激光, 2017, 44:0201002 doi: 10.3788/CJL201744.0201002

    Zheng Ye, Yang Yifeng, Zhao Xiang, et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44: 0201002 doi: 10.3788/CJL201744.0201002
    [16] Zheng Ye, Zhu Zhanda, Liu Xiaoxi, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Applied Optics, 2019, 58(30): 8339-8343. doi: 10.1364/AO.58.008339
    [17] 周泰斗, 梁小宝, 李超, 等. 基于透射型体布拉格光栅的两通道2.5 kW光谱组束输出[J]. 物理学报, 2017, 66:084204 doi: 10.7498/aps.66.084204

    Zhou Taidou, Liang Xiaobao, Li Chao, et al. 2.5 kW average power, two-channel spectral-beam-combined output based on transmitting volume Bragg grating[J]. Acta Physica Sinica, 2017, 66: 084204 doi: 10.7498/aps.66.084204
    [18] Zhou Taidou, Liang Xiaobao, Li Chao, et al. Spectral beam combining of fiber lasers by using reflecting volume Bragg gratings[J]. Chinese Physics Letters, 2016, 33: 124205. doi: 10.1088/0256-307X/33/12/124205
    [19] Ludewigt K, Liem A, Stuhr U, et al. High-power laser development for laser weapons[C]//Proceedings of SPIE 11162, High Power Lasers: Technology and Systems, Platforms, Effects III. 2019: 1116207.
    [20] Ma Jun, Chen Fan, Wei Cong, et al. Modeling and analysis of the influence of an edge filter on the combining efficiency and beam quality of a 10-kW-class spectral beam-combining system[J]. Applied Sciences, 2019, 9: 2152. doi: 10.3390/app9102152
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  58
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 修回日期:  2023-11-08
  • 录用日期:  2023-09-20
  • 网络出版日期:  2023-11-16
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回