9.6 kW combined light source using dichroic-mirror-based spectral beam combining
-
摘要: 通过光纤激光光谱合成技术,可以打破单个光纤激光器输出功率受非线性因素制约的限制,实现更高功率的激光输出。通过梳理光谱合成技术的发展历程并分析其现状,对其原理及优劣势进行分析,结合自身研究,设计了一款便携式3路合成系统,通过设计及优化光纤激光器的放大结构,严格把控参与合束的子束光源的质量,将1055、1070和1085 nm三路高功率窄线宽光纤激光进行合束,对合成系统中采用的双色镜进行研究,对其膜系指标进行严格的设计,对高陡度截止滤光膜的设计方法以及制备工艺进行分析,对其热损伤规律及控制技术进行研究,优化整个合成系统,最终实现合成功率9650 W的高功率激光输出,合成效率92%,光束质量M2为1.7,并对未来双色镜光谱合成进行了展望。Abstract: Using the fiber laser spectral beam combining technology, the limitation of the output power of a single fiber laser due to nonlinear factors can be broken, and a higher power laser output can be realized. Combing the development history of spectral beam combing technology and analyzing its current situation, principle, advantages and disadvantages, and combining with our research, we have designed a portable 3-channel combining system. By optimizing the entire combining system, three high power narrow linewidth fiber lasers of 1055 nm, 1070 nm and 1085 nm were combined to achieve a high-power laser output of 9650 W, with combincotion efficiency of 92%, and beam quality M2 of 1.7. The future dichromatic mirror spectral beam combining is also prospected.
-
Key words:
- fiber laser /
- high power /
- narrow linewidth /
- dichroic mirror /
- spectral beam combining
-
表 1 双色镜合成相关参数对比
Table 1. Comparison of parameters related to bicolor mirror combination
year authors power/kW beam quality combined efficiency/% 2015 Zhou Taidou et al 2.50 Mx2=4.21
My2=2.83/ 2016 Zhou Taidou et al 0.72 M2=1.54 94 2019 K. Ludewight et al 5.90 M2=1.90 / 2019 Ma Jun et al 10.25 Mx2≈12.00,My2>14.00 98 -
[1] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279 [2] Zhou Pujun, Wang Xianliang, Xiao Huadong, et al. Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges[J]. Laser Physics, 2012, 22(5): 823-831. doi: 10.1134/S1054660X12050404 [3] Shi Wei, Schulzgen A, Amezcua R, et al. Fiber lasers and their applications: introduction[J]. Journal of the Optical Society of America B, 2017, 34(3): FLA1. doi: 10.1364/JOSAB.34.00FLA1 [4] Buikema A, Jose F, Augst S J, et al. Narrow-linewidth fiber amplifier for gravitational-wave detectors[J]. Optics Letters, 2019, 44(15): 3833-3836. doi: 10.1364/OL.44.003833 [5] Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654. doi: 10.1364/OE.19.018645 [6] Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Optics Express, 2013, 21(2): 1944-1971. doi: 10.1364/OE.21.001944 [7] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192. doi: 10.1364/OE.19.010180 [8] Uberna R, Bratcher A, Tiemann B G. Coherent polarization beam combination[J]. IEEE Journal of Quantum Electronics, 2010, 46(8): 1191-1196. doi: 10.1109/JQE.2010.2044976 [9] 马鹏飞, 马阎星, 粟荣涛, 等. 8 kW级光纤激光优质高效相干合成(简讯)[J]. 红外与激光工程, 2020, 49:20190577 doi: 10.3788/irla.32_2019-0577Ma Pengfei, Ma Yanxing, Su Rongtao, et al. High quality and efficient coherent combined of 8 kW fiber laser[J]. Infrared and Laser Engineering, 2020, 49: 20190577 doi: 10.3788/irla.32_2019-0577 [10] Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam for material processing[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 1126021. [11] Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency, and brightness[C]//Proceedings of SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications. 2012: 860115. [12] Von Elm R, Marois C. Beam-combiner for fiber-delivered laser-beams of different wavelengths: 9075237[P]. 2015-07-07. [13] Pan Hui. Lockheed Martin readies 60 kW fiber laser weapon for U. S. army[J]. Fiber Optics & Communications: Monthly Newsletter Lovering Domestic & International News on Fiber Optic Communications and Related Fields, 2017, 40(3): 8-9. [14] Strecker M, Plötner M, Stutzki F, et al. Highly efficient dual-grating 3-channel spectral beam combining of narrow-linewidth monolithic cw Yb-doped fiber amplifiers up to 5.5 kW[C]//Proceedings of SPIE 10897, Fiber Lasers XVI: Technology and Systems. 2019: 108970E. [15] 郑也, 杨依枫, 赵翔, 等. 高功率光纤激光光谱合成技术的研究进展[J]. 中国激光, 2017, 44:0201002 doi: 10.3788/CJL201744.0201002Zheng Ye, Yang Yifeng, Zhao Xiang, et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44: 0201002 doi: 10.3788/CJL201744.0201002 [16] Zheng Ye, Zhu Zhanda, Liu Xiaoxi, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Applied Optics, 2019, 58(30): 8339-8343. doi: 10.1364/AO.58.008339 [17] 周泰斗, 梁小宝, 李超, 等. 基于透射型体布拉格光栅的两通道2.5 kW光谱组束输出[J]. 物理学报, 2017, 66:084204 doi: 10.7498/aps.66.084204Zhou Taidou, Liang Xiaobao, Li Chao, et al. 2.5 kW average power, two-channel spectral-beam-combined output based on transmitting volume Bragg grating[J]. Acta Physica Sinica, 2017, 66: 084204 doi: 10.7498/aps.66.084204 [18] Zhou Taidou, Liang Xiaobao, Li Chao, et al. Spectral beam combining of fiber lasers by using reflecting volume Bragg gratings[J]. Chinese Physics Letters, 2016, 33: 124205. doi: 10.1088/0256-307X/33/12/124205 [19] Ludewigt K, Liem A, Stuhr U, et al. High-power laser development for laser weapons[C]//Proceedings of SPIE 11162, High Power Lasers: Technology and Systems, Platforms, Effects III. 2019: 1116207. [20] Ma Jun, Chen Fan, Wei Cong, et al. Modeling and analysis of the influence of an edge filter on the combining efficiency and beam quality of a 10-kW-class spectral beam-combining system[J]. Applied Sciences, 2019, 9: 2152. doi: 10.3390/app9102152