留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国散裂中子源二期648 MHz超导腔调谐器设计

刘铭 米正辉 潘卫民 葛锐 贺斐思 周文中 徐妙富 王子晗

刘铭, 米正辉, 潘卫民, 等. 中国散裂中子源二期648 MHz超导腔调谐器设计[J]. 强激光与粒子束, 2023, 35: 124007. doi: 10.11884/HPLPB202335.230227
引用本文: 刘铭, 米正辉, 潘卫民, 等. 中国散裂中子源二期648 MHz超导腔调谐器设计[J]. 强激光与粒子束, 2023, 35: 124007. doi: 10.11884/HPLPB202335.230227
Liu Ming, Mi Zhenghui, Pan Weimin, et al. Design of 648 MHz superconducting cavity tuner forChina Spallation Neutron Source phase II[J]. High Power Laser and Particle Beams, 2023, 35: 124007. doi: 10.11884/HPLPB202335.230227
Citation: Liu Ming, Mi Zhenghui, Pan Weimin, et al. Design of 648 MHz superconducting cavity tuner forChina Spallation Neutron Source phase II[J]. High Power Laser and Particle Beams, 2023, 35: 124007. doi: 10.11884/HPLPB202335.230227

中国散裂中子源二期648 MHz超导腔调谐器设计

doi: 10.11884/HPLPB202335.230227
基金项目: 中国科学院青年创新促进会-人才支撑体系专项(292022000038)
详细信息
    作者简介:

    刘 铭,mliu@ihep.ac.cn

    通讯作者:

    米正辉,mizh@ihep.ac.cn

  • 中图分类号: TL503.2

Design of 648 MHz superconducting cavity tuner forChina Spallation Neutron Source phase II

  • 摘要: 中国散裂中子源二期升级采用超导腔技术方案,其中在165~300 MeV能量段采用648 MHz 6-cell 超导腔模组,每个模组中集成3只6-cell超导腔。超导腔工作在脉冲模式,为了保证超导腔2 K下的频率满足运行要求,每只超导腔需要一套低温调谐器对其频率进行精确调节控制。针对648 MHz 6-cell超导腔的结构和运行特点进行了低温调谐器的设计,采用快慢组合机构补偿超导腔的频率偏移,对调谐器的基本性能和超导腔脉冲模式运行下的动态洛伦兹失谐进行了分析。
  • 图  1  腔输入功率需求随频率失谐量的变化图

    Figure  1.  Variation of cavity input power demand with frequency detuning

    图  2  超导腔洛伦兹力失谐随调谐器刚度变化图

    Figure  2.  Plot of superconducting cavity Lorentz forcedetuning versus tuner stiffness

    图  3  调谐器设计模型原理图

    Figure  3.  Schematic of tuner design model

    图  4  调谐器3D模型图

    Figure  4.  Diagram of tuner 3D model

    图  5  调谐器机械特性仿真分析

    Figure  5.  Simulation analysis of tuner mechanical characteristics

    图  6  机械调谐轴向模型图

    Figure  6.  Diagram of mechanical tuning axial model

    图  7  机械调谐轴向简化模型图

    Figure  7.  Diagram of mechanical tuning axial simplifiedmodel

    图  8  压电陶瓷调谐轴向模型图

    Figure  8.  Diagram of piezoelectric ceramic tuning axial model

    图  9  压电陶瓷调谐轴向简化模型图

    Figure  9.  Diagram of simplified piezoelectric ceramic tuning axialsimplified model

    图  10  脉冲期间加速梯度随时间变化图

    Figure  10.  Variation of acceleration gradient with time during the pulse

    图  11  脉冲期间超导腔动态洛伦兹失谐

    Figure  11.  Dynamic Lorentz force detuning during the pulse

    图  12  脉冲期间超导腔响应(0~4 ms)

    Figure  12.  Superconducting cavity response during pulses (0~4 ms)

    图  13  调谐器测试图

    Figure  13.  Photo of tuner mounted test on 650 MHz single cell cavity

    图  14  步进电机转动步数与超导腔频率变化与调谐器位移变化图

    Figure  14.  Plot of tuner stepper motor steps versus superconducting cavity frequency variation and tuner displacement variation

    表  1  超导腔运行主要参数

    Table  1.   Superconducting cavity operating parameters

    working frequency/MHz bandwidth of cavity/Hz operation mode pulse frequency/Hz operating gradient/(MV·m−1)
    648 668 pulse 25 14
    KL/(Hz·m2·MV−2) pressure sensitivity/(Hz·Pa−1) field flatness (R/Q)/Ω beam current/mA
    1.5 0.15 > 90% 310 40
    operation temperture/K operation pressure/Pa maximum allowable working pressure/MPa cavity axial stiffness/(N·mm−1) tuning sensitivity/(kHz·mm−1)
    2 3100 0.2(room temperaturer), 0.4(2 K) 2225 171
    下载: 导出CSV

    表  2  调谐器系统需求参数

    Table  2.   Tuner system requirement parameters

    tuner system stiffness/(kN·mm−1) slow tuner frequency range/kHz stepper motor resolution/Hz piezo tuner frequency range/kHz piezo tuner resolution/Hz
    > 100 > 100 10 1 4
    下载: 导出CSV

    表  3  648 MHz超导腔机械特性

    Table  3.   Mechanical properties of 648 MHz superconducting cavity

    parts material axial flexibility/(mm·kN−1) axial rigidity/(kN·mm−1)
    cavity Nb 0.4494 2.225(Kc)
    front washer disk Nb55Ti 0.0339 29.52($ {K}_{\mathrm{w}1} $)
    end washer disk Nb55Ti 0.01914 52.24($ {K}_{\mathrm{w}2} $)
    helium tank Ti 0.008996 111.16($ {K}_{\mathrm{h}} $)
    tuner bellow Ti 32.327 0.031($ {K}_{\mathrm{b}} $)
    tuner 316L 0.00796 125.61($ {K}_{\mathrm{t}} $)
    interface rings Ti 0.00196 509.68($ {K}_{\mathrm{i}} $)
    piezo actuator HP 0.0125 80($ {K}_{\mathrm{p}} $)
    下载: 导出CSV

    表  4  机械调谐器产生$ 1\;{\text{μ}}{\rm{m}}$位移时各部件受力及位移状态表

    Table  4.   Force and displacement status of each component, when the mechanical tuner produces a displacement of $ 1\;{\text{μ}}{\rm{m}} $

    parts force/N displacement/${\text{μ}}\mathrm{m} $
    piezo actuator/interface rings −2.03 −0.017
    tuner bellow/end dishes −0.03 −0.980
    helium tank/Front dishes −2.00 −0.086
    cavity 2.00 0.898
    下载: 导出CSV

    表  5  压电陶瓷调谐器产生$ 1\;{\text{μ}}{\rm{m}} $位移时各部件受力及位移状态表

    Table  5.   Force and displacement status of each component, when the piezoelectric ceramics produces a displacement of $ 1\;{\text{μ}}{\rm{m}} $

    parts force/N displacement/$ {\text{μ}}{\rm{m}} $
    tuner/interface rings −2.02 −0.020
    tuner bellow/end dishes −0.03 −0.980
    helium tank/front dishes −1.99 −0.085
    cavity 1.99 0.895
    下载: 导出CSV

    表  6  安装调谐器前后洛伦兹力失谐参数表

    Table  6.   Lorentz force detuning parameters before and after installing the tuner

    state LFD factor/
    (Hz·m2·MV−2)
    maximum
    detuning/Hz
    without tuner 9.32 1827
    with tuner 1.48 290
    下载: 导出CSV
  • [1] 周文中, 潘卫民, 葛锐, 等. 中国散裂中子源二期双spoke超导腔设计[J]. 强激光与粒子束, 2023, 35:034004 doi: 10.11884/HPLPB202335.220266

    Zhou Wenzhong, Pan Weimin, Ge Rui, et al. Design of the China Spallation Neutron Source phase II double spoke resonator[J]. High Power Laser and Particle Beams, 2023, 35: 034004 doi: 10.11884/HPLPB202335.220266
    [2] Delayen J R. Ponderomotive instabilities and microphonics—a tutorial[J]. Physica C:Superconductivity, 2006, 441(1/2): 1-6.
    [3] 倪柏初, 戴建枰, 张娟, 等. Spoke012超导腔低温调谐器的研制[J]. 核电子学与探测技术, 2015, 35(4):403-407 doi: 10.3969/j.issn.0258-0934.2015.04.021

    Ni Baichu, Dai Jianping, Zhang Juan, et al. Development of a cryogenic tuner for the Spoke012 superconducting cavity[J]. Nuclear Electronics & Detection Technology, 2015, 35(4): 403-407 doi: 10.3969/j.issn.0258-0934.2015.04.021
    [4] Mitchell R, Matsumoto K, Ciovati G, et al. Lorentz force detuning analysis of the Spallation Neutron Source (SNS) accelerating cavities[R]. Los Alamos: Thomas Jefferson National Accelerator Facility, 2001.
    [5] Rathore M, Jain V K, Atulkar A, et al. Study of Lorentz force detuning and its compensation in superconducting radiofrequency cavity: a review[J]. Materials Today:Proceedings, 2021, 44: 1369-1374. doi: 10.1016/j.matpr.2020.11.506
    [6] Schmidt C, Branlard J, Bousonville M, et al. Operational experience with the European XFEL SRF linac[C]//Proceedings of the 21st International Conference on Radio-Frequency Superconductivity. 2023.
    [7] Kern R S, Svanberg C, Fransson K, et al. Completion of testing series double-spoke cavity cryomodules for ESS[C]//Proceedings of the 21st International Conference on Radio-Frequency Superconductivity. 2023.
    [8] Pischalnikov Y, Contreras-Martinez C. Review of the application piezoelectric actuators for SRF cavity tuners[C]//Proceedings of the 23rd International Conference & Exhibition. 2023.
    [9] Belomestnykh S, Posen S, Bafia D, et al. Key directions for research and development of superconducting radio frequency cavities[DB/OL]. arXiv preprint arXiv: 2204.01178, 2022.
    [10] Borissov E, Gonin I, Khabiboulline T, et al. Design of a compact lever slow/fast tuner for 650 MHz cavities for project X[C]//Proceedings of LINAC2014. 2014: 957-959.
    [11] Contreras-Martinez C. Electromagnetic and mechanical properties of medium β SRF elliptical cavities[D]. East Lansing: Michigan State University, 2021.
    [12] 米正辉. 超导腔调谐器设计研究[D]. 北京: 中国科学院高能物理研究所, 2015

    Mi Zhenghui. Design and research of tuner for superconducting cavity[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2015
    [13] Pagani C, Bosotti A, Michelato P, et al. Report on fast piezo blade tuner (UMI tuner) for SCRF resonators design and fabrication[R]. CARE-Note-05-021-SRF, 2005.
    [14] Cano-Pleite E, Amorim A, Swieszek J S, et al. Numerical evaluation of the tuning, pressure sensitivity and Lorentz force detuning of RF superconducting crab cavities[C]//Excerpt from the Proceedings of the 2018 COMSOL Conference in Lausanne. 2018.
    [15] Ayvazyan V, Simrock S N. Dynamic Lorentz force detuning studies in TESLA cavities[C]//Proceedings of the EPAC 2004. 2004.
    [16] Gassot H M. Etudes de la stabilité mécanique des cavités supraconductrices et de la méthode de rigidification par projection thermique de cuivre[R]. IPNO-T-2002-01, 2001.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  104
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-21
  • 修回日期:  2023-09-04
  • 录用日期:  2023-09-25
  • 网络出版日期:  2023-11-16
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回