留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相干渡越辐射束团纵向分布重建方法

袁肖肖 李佳 闫文兵 冉朝晖 杨鑫 赵全堂 宗阳 曹树春 张子民

袁肖肖, 李佳, 闫文兵, 等. 相干渡越辐射束团纵向分布重建方法[J]. 强激光与粒子束, 2023, 35: 114002. doi: 10.11884/HPLPB202335.230263
引用本文: 袁肖肖, 李佳, 闫文兵, 等. 相干渡越辐射束团纵向分布重建方法[J]. 强激光与粒子束, 2023, 35: 114002. doi: 10.11884/HPLPB202335.230263
Yuan Xiaoxiao, Li Jia, Yan Wenbing, et al. Reconstruction algorithm for bunch longitudinal distribution of coherent transition radiation[J]. High Power Laser and Particle Beams, 2023, 35: 114002. doi: 10.11884/HPLPB202335.230263
Citation: Yuan Xiaoxiao, Li Jia, Yan Wenbing, et al. Reconstruction algorithm for bunch longitudinal distribution of coherent transition radiation[J]. High Power Laser and Particle Beams, 2023, 35: 114002. doi: 10.11884/HPLPB202335.230263

相干渡越辐射束团纵向分布重建方法

doi: 10.11884/HPLPB202335.230263
基金项目: 国家重点研发计划项目(2019YFA0404900);甘肃省自然科学基金项目(21JR7RA103)
详细信息
    作者简介:

    袁肖肖,yuanxx@impcas.ac.cn

    通讯作者:

    赵全堂, zhaoquantang@impcas.ac.cn

  • 中图分类号: TL53

Reconstruction algorithm for bunch longitudinal distribution of coherent transition radiation

  • 摘要: 实验上通过相干渡越辐射(CTR)能谱分析法测量束团长度以及进行纵向束团形状重建已成为一种有效的束流诊断手段。通过迈克尔逊干涉仪测量太赫兹辐射能谱,通常实验所用探测器只能测量辐射的强度谱的幅值,且由于缺少相位无法直接进行束团形状重建。目前重建算法主要有Kramers-Kronig(K-K)相位分析法和代数迭代重建算法。利用这两种算法分别对高斯分布和带拖尾的高斯分布模型进行验证并进行了对比,其中K-K得出的重建结果存在一定的误差,迭代算法在解决重建反转歧义、重建噪声抑制等表现良好。同时利用这两种算法对兰州高能电子成像平台CTR实验结果进行了重建及分析,得出了对应的重建结果,为后续高能电子束成像平台的束流诊断反馈提供了一种参考手段。
  • 图  1  渡越辐射原理图与渡越辐射强度分布

    Figure  1.  Schematic diagram and intensity distribution of transition radiation

    图  2  迈克尔逊干涉仪布局图

    Figure  2.  Layout of Michelson interferometer

    图  3  迭代算法计算流程图

    Figure  3.  Flow chart of iterative algorithm

    图  4  迭代算法重建模拟实验

    Figure  4.  Simulation experiment outcome of the iterative algorithm

    图  5  HEER实验平台布局图

    Figure  5.  Layout diagram of the HEER experimental platform

    图  6  自相干曲线数据

    Figure  6.  data of auto-coherence curve

    图  7  拟合后得形状因子

    Figure  7.  The form factor is derived through fitting procedures

    图  8  K-K算法与迭代算法结果对比

    Figure  8.  comparative analysis of results between the K-K algorithm and the iterative algorithm

  • [1] 张令翊, 庄杰佳, 赵夔, 等. 第四代光源[J]. 强激光与粒子束, 2001, 13(1):51-55

    Zhang Lingyi, Zhuang Jiejia, Zhao Kui, et al. Fourth-generation light sources[J]. High Power Laser and Particle Beams, 2001, 13(1): 51-55
    [2] 闫陇刚, 邓德荣, 张浩, 等. 太赫兹自由电子激光波荡器的设计、测量与优化[J]. 强激光与粒子束, 2018, 30:113101 doi: 10.11884/HPLPB201830.180247

    Yan Longgang, Deng Derong, Zhang Hao, et al. Design, measurement and optimization of undulator for terahertz free electron laser[J]. High Power Laser and Particle Beams, 2018, 30: 113101 doi: 10.11884/HPLPB201830.180247
    [3] Xiang Dao, Colby E, Dunning M, et al. Demonstration of the echo-enabled harmonic generation technique for short-wavelength seeded free electron lasers[J]. Physical Review Letters, 2010, 105: 114801. doi: 10.1103/PhysRevLett.105.114801
    [4] Mangles S P D, Murphy C D, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions[J]. Nature, 2004, 431(7008): 535-538. doi: 10.1038/nature02939
    [5] BrownW J, AndersonSG, BartyCP J, et al. Generation of high brightness X-rays with the PLEIADES Thomson X-ray source[C]//Proceedings of the 2003 Particle Accelerator Conference. 2003: 95-97.
    [6] 王季刚, 何志刚, 孙葆根, 等. 条纹相机系统在激光脉冲整形测量中的应用[J]. 强激光与粒子束, 2012, 24(6):1461-1465 doi: 10.3788/HPLPB20122406.1461

    Wang Jigang, He Zhigang, Sun Baogen, et al. Application of streak camera system to measurement of laser pulse shaping[J]. High Power Laser and Particle Beams, 2012, 24(6): 1461-1465 doi: 10.3788/HPLPB20122406.1461
    [7] Yan X, MacLeod A M, Gillespie W A, et al. Subpicosecond electro-optic measurement of relativistic electron pulses[J]. Physical Review Letters, 2000, 85(16): 3404-3407. doi: 10.1103/PhysRevLett.85.3404
    [8] Dowell D H, Bolton P R, Clendenin J E, et al. Slice emittance measurements at the SLAC Gun Test Facility[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 507(1/2): 327-330.
    [9] Potylitsyn AP. Transition radiation and diffraction radiation. Similarities and differences[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1998, 145(1/2): 169-179.
    [10] Lihn H C, Kung P, Settakorn C, et al. Measurement of subpicosecond electron pulses[J]. Physical Review E, 1996, 53(6): 6413-6418. doi: 10.1103/PhysRevE.53.6413
    [11] Paech A, Ackermann W, Weiland T, et al. Numerical simulation of synchrotron radiation for bunch diagnostics[C]//Proceedings of the 10th European Particle Accelerator Conference (EPAC 06). 2006: 1031-1033.
    [12] Bei Hua, Dai Zhimin. Theoretical and numerical analysis of coherent Smith-Purcell radiation[J]. Chinese Physics C, 2008, 32(11): 916-923. doi: 10.1088/1674-1137/32/11/014
    [13] Muggli P, Blue B E, Clayton C E, etal. Meter-scale plasma-wakefield accelerator driven by a matched electron beam[J]. Physical Review Letters, 2004, 93: 014802. doi: 10.1103/PhysRevLett.93.014802
    [14] Schmidt B, Lockmann N M, Schmüser P, et al. Benchmarking coherent radiation spectroscopy as a tool for high-resolution bunch shape reconstruction at free-electron lasers[J]. Physical Review Accelerators and Beams, 2020, 23: 062801. doi: 10.1103/PhysRevAccelBeams.23.062801
    [15] 向导. 高亮度电子束发射度、束长和束斑的先进测量方法研究[D]. 北京: 清华大学, 2008

    Xiang Dao. Advanced beam measurements of emittance, bunch length, and beam size for high-brightness electron beam[D]. Beijing: Tsinghua University, 2008
    [16] 边宇. 基于相干渡越辐射的亚皮秒级电子束长测量研究[D]. 上海: 中国科学院大学(上海应用物理研究所), 2017

    Bian Yu. Sub-picosecond electron bunch length measurements using coherent transition radiation at SXFEL[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics Chinese Academy of Sciences), 2017
    [17] Ran Zhaohui, Li Zhongping, Zhao Quantang, et al. Demonstration of high energy electron radiography with sub-micron spatial resolution[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1015: 165769.
    [18] Bajlekov S I, Heigoldt M, Popp A, et al. Longitudinal electron bunch profile reconstruction by performing phase retrieval on coherent transition radiation spectra[J]. Physical Review Accelerators and Beams, 2013, 16: 040701. doi: 10.1103/PhysRevSTAB.16.040701
    [19] 艾蕾, 赵全堂, 宗阳, 等. 兰州高能电子成像实验平台电子束团长度测量研究[J]. 原子能科学技术, 2022, 56(3):570-576

    Ai Lei, Zhao Quantang, Zong Yang, et al. Study on electron bunch length measurement of Lanzhou high energy electron radiography experimental platform[J]. Atomic Energy Science and Technology, 2022, 56(3): 570-576
    [20] Lai R, Sievers A J. On using the coherent far IR radiation produced by a charged-particle bunch to determine its shape: I analysis[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 397(2/3): 221-231.
    [21] FrhlichL. Bunch length measurements using a Martin-Puplett interferometer at the VUV-FEL[D]. Hamburg Department of Physics of the University, 2005.
    [22] Pelliccia D, Sen T. A two-step method for retrieving the longitudinal profile of an electron bunch from its coherent radiation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 764: 206-214.
    [23] Fienup J R, Crimmins T R, Holsztynski W. Reconstruction of the support of an object from the support of its autocorrelation[J]. Journal of the Optical Society of America, 1982, 72(5): 610-624. doi: 10.1364/JOSA.72.000610
    [24] 赵全堂, 张子民, 曹树春, 等. 高能电子成像研究进展[J]. 原子能科学技术, 2019, 53(9):1651-1655

    Zhao Quantang, Zhang Zimin, Cao Shuchun, et al. Status and progress of high energy electron radiography[J]. Atomic Energy Science and Technology, 2019, 53(9): 1651-1655
  • 加载中
图(8)
计量
  • 文章访问数:  436
  • HTML全文浏览量:  194
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-11
  • 修回日期:  2023-10-23
  • 录用日期:  2023-10-23
  • 网络出版日期:  2023-10-25
  • 刊出日期:  2023-11-11

目录

    /

    返回文章
    返回