留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重复频率微波脉冲大气击穿延时与电离率

杨浩 郑强林 黄诺慈 刘星辰 鲍向阳 闫二艳

杨浩, 郑强林, 黄诺慈, 等. 重复频率微波脉冲大气击穿延时与电离率[J]. 强激光与粒子束, 2024, 36: 013004. doi: 10.11884/HPLPB202436.230082
引用本文: 杨浩, 郑强林, 黄诺慈, 等. 重复频率微波脉冲大气击穿延时与电离率[J]. 强激光与粒子束, 2024, 36: 013004. doi: 10.11884/HPLPB202436.230082
Yang Hao, Zheng Qianglin, Huang Nuoci, et al. Atmospheric breakdown delay and ionization rate of repetitive microwave pulses[J]. High Power Laser and Particle Beams, 2024, 36: 013004. doi: 10.11884/HPLPB202436.230082
Citation: Yang Hao, Zheng Qianglin, Huang Nuoci, et al. Atmospheric breakdown delay and ionization rate of repetitive microwave pulses[J]. High Power Laser and Particle Beams, 2024, 36: 013004. doi: 10.11884/HPLPB202436.230082

重复频率微波脉冲大气击穿延时与电离率

doi: 10.11884/HPLPB202436.230082
基金项目: 国家自然科学基金项目(62001442)
详细信息
    作者简介:

    杨 浩,mushui9@qq.com

    通讯作者:

    闫二艳,yaneryan_2002@163.com

  • 中图分类号: O531

Atmospheric breakdown delay and ionization rate of repetitive microwave pulses

  • 摘要: 针对高功率微波在大气传输中可能出现的击穿现象,研究了脉冲序列中首次脉冲击穿延时和后续脉冲击穿延时,研究结果发现首次脉冲击穿延时在脉宽范围内大致均匀分布,后续脉冲击穿延时波动性较小。根据击穿延时数据对电离率进行了分析,指出在重复频率条件下,初始电子密度较高,电子密度分布不适用指数分布,无法用延时数据标准差对电离率进行估计。提出了一种用重复频率脉冲击穿延时数据计算电离率的方法,并将计算结果与仿真结果进行了对比,结果显示,二者有较好的对应关系。
  • 图  1  实验C脉宽对首次击穿延时的影响

    Figure  1.  Effect of pulse width on first breakdown delay from Table 1-C

    图  2  实验B重复频率对首次击穿延时的影响

    Figure  2.  Effect of repetition frequency on first breakdown delay from Table 1-B

    图  3  实验A场强对首次击穿延时的影响

    Figure  3.  Effect of field strength on first breakdown delay from Table 1-A

    图  4  300 Pa气压下,不同场强下,击穿延时与重复频率的变化曲线

    Figure  4.  Curve of breakdown delay versus repetition frequency at 300 Pa pressure with different field strengths

    表  1  实验结果

    Table  1.   Results of experiments

    No. pressure/Pa electric intensity/(kV·cm−1) repetitive frequency/Hz pulse width /ns Tavg/ns
    A1 1000 0.92 20 20000 45
    A2 1000 1.29 20 20000 22.5
    B1 300 0.92 5 2000 35
    B2 300 0.92 50 2000 25
    B3 300 0.92 500 2000 15
    C1 300 1.29 50 20 10
    C2 300 1.29 50 200 10
    C3 300 1.29 50 2000 10
    C4 300 1.29 50 20000 10
    下载: 导出CSV

    表  2  击穿延时数据

    Table  2.   Breakdown delay data

    electric field/
    (kV·cm−1)
    breakdown delay time/ns
    fr=3 Hz fr=10 Hz fr=20 Hz fr=50 Hz fr=150 Hz
    0.92 185.0 176.5 173.5 170.8 168.1
    1.29 169.9 166.2 164.6 163.1 161.9
    1.61 162.4 160.4 159.6 158.7 158.1
    下载: 导出CSV
  • [1] Barker R J, Schamiloglu E. 高功率微波源与技术[M]. 刘国治, 周传明, 译. 北京: 清华大学出版社, 2005

    Barker R J, Schamiloglu E. High-power microwave sources and technologies[M]. Liu Guozhi, Zhou Chuanming, trans. Beijing: Tsinghua University Press, 2005: 154-158
    [2] 杨浩, 闫二艳, 郑强林, 等. 临近空间高功率微波辐照放电试验技术[J]. 强激光与粒子束, 2019, 31:103216 doi: 10.11884/HPLPB201931.190151

    Yang Hao, Yan Eryan, Zheng Qianglin, et al. Examination research of high power microwave irradiation discharge in near space[J]. High Power Laser and Particle Beams, 2019, 31: 103216 doi: 10.11884/HPLPB201931.190151
    [3] Sprangle P, Hafizi B, Milchberg H, et al. Active remote detection of radioactivity based on electromagnetic signatures[J]. Physics of Plasmas, 2014, 21: 013103. doi: 10.1063/1.4861633
    [4] Isaacs J, Miao C L, Sprangle P. Remote monostatic detection of radioactive material by laser-induced breakdown[J]. Physics of Plasmas, 2016, 23: 033507. doi: 10.1063/1.4943404
    [5] Nusinovich G S, Pu R F, Antonsen T M, et al. Development of THz-range gyrotrons for detection of concealed radioactive materials[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 380-402. doi: 10.1007/s10762-010-9708-y
    [6] Nusinovich G S, Sprangle P, Semenov V E, et al. On the sensitivity of terahertz gyrotron based systems for remote detection of concealed radioactive materials[J]. Journal of Applied Physics, 2012, 111: 124912. doi: 10.1063/1.4730959
    [7] Dorozhkina D, Semenov V, Olsson T, et al. Investigations of time delays in microwave breakdown initiation[J]. Physics of Plasmas, 2006, 13: 013506. doi: 10.1063/1.2158696
    [8] Foster J, Krompholz H, Neuber A. Investigation of the delay time distribution of high power microwave surface flashover[J]. Physics of Plasmas, 2011, 18: 013502. doi: 10.1063/1.3534823
    [9] Kim D, Yu D, Sawant A, et al. Remote detection of radioactive material using high-power pulsed electromagnetic radiation[J]. Nature Communications, 2017, 8: 15394. doi: 10.1038/ncomms15394
    [10] 魏进进, 周东方, 余道杰, 等. 高功率微波作用下O离子解吸附产生种子电子过程[J]. 物理学报, 2016, 65:055202 doi: 10.7498/aps.65.055202

    Wei Jinjin, Zhou Dongfang, Yu Daojie, et al. Seed electron production from O detachment in high power microwave air breakdown[J]. Acta Physica Sinica, 2016, 65: 055202 doi: 10.7498/aps.65.055202
    [11] 杨浩, 闫二艳, 郑强林, 等. 一种准光反射聚焦微波放电大气等离子体装置[J]. 强激光与粒子束, 2019, 31:053002 doi: 10.11884/HPLPB201931.180350

    Yang Hao, Yan Eryan, Zheng Qianglin, et al. A microwave plasma system with quasi optical focusing reflector[J]. High Power Laser and Particle Beams, 2019, 31: 053002 doi: 10.11884/HPLPB201931.180350
    [12] SIGLO database[OL]. [2013-06-04]. http://www.lxcat.laplace.univ-tlse.fr.
    [13] Lawton S A, Phelps A V. Excitation of the b1Σ+ g state of O2 by low energy electrons[J]. The Journal of Chemical Physics, 1978, 69(3): 1055-1068. doi: 10.1063/1.436700
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  274
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 修回日期:  2023-10-31
  • 录用日期:  2023-10-31
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回