留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压保护开关缓冲电路参数优化设计

李志恒 马少翔 张鸿淇 朱帮友 张明 于克训 潘垣

李志恒, 马少翔, 张鸿淇, 等. 高压保护开关缓冲电路参数优化设计[J]. 强激光与粒子束, 2024, 36: 025009. doi: 10.11884/HPLPB202436.230158
引用本文: 李志恒, 马少翔, 张鸿淇, 等. 高压保护开关缓冲电路参数优化设计[J]. 强激光与粒子束, 2024, 36: 025009. doi: 10.11884/HPLPB202436.230158
Li Zhiheng, Ma Shaoxiang, Zhang Hongqi, et al. Parameter optimization design of snubber circuit for high voltage protection switch[J]. High Power Laser and Particle Beams, 2024, 36: 025009. doi: 10.11884/HPLPB202436.230158
Citation: Li Zhiheng, Ma Shaoxiang, Zhang Hongqi, et al. Parameter optimization design of snubber circuit for high voltage protection switch[J]. High Power Laser and Particle Beams, 2024, 36: 025009. doi: 10.11884/HPLPB202436.230158

高压保护开关缓冲电路参数优化设计

doi: 10.11884/HPLPB202436.230158
基金项目: 国家重点研发计划项目(2017YFE0300104); 国家自然科学基金项目(51821005)
详细信息
    作者简介:

    李志恒,zhihengli@hust.edu.cn

    通讯作者:

    马少翔,mashaoxiang@hust.edu.cn

  • 中图分类号: TM832

Parameter optimization design of snubber circuit for high voltage protection switch

  • 摘要: 目前的高压保护开关缓冲电路参数设计缺乏相关理论设计方法,同时缓冲电路方案由于设计过程中并未考虑分布电容影响,因此均为等参数设计方案,这种方法均压效果不够理想。为了解决目前参数设计中存在的问题,首先建立了含缓冲电路和杂散电感的MOSFET模型并对其关断过程进行了分析,从而得到了抑制电压尖峰的缓冲电路理论设计方法及表达式。针对串联均压未考虑分布电容的问题,通过构造等电位点,建立了含有分布电容的等效电路并进行分析,根据电荷方程等式得到了缓冲电路非等参数设计方法及表达式,该参数设计方法可以补偿分布电容造成的电压分布不均,并更好地指导高压保护开关的均压方案设计。为了验证参数设计的合理性进行了仿真分析,结果表明,最终得到的整体设计方案可以满足尖峰抑制以及均压的设计要求。
  • 图  1  电压钳位型均压电路原理图

    Figure  1.  Schematic diagram of voltage clamp voltage-balancing circuit

    图  2  电压钳位型均压电路工作原理图

    Figure  2.  Working principle diagram of voltage clamp voltage-balancing circuit

    图  3  新型均压拓扑原理图

    Figure  3.  Schematic diagram of new voltage-sharing topology

    图  4  拓扑工作模式示意图

    Figure  4.  Schematic diagram of topology working modes

    图  5  分析电路示意图

    Figure  5.  Schematic diagram of analytical circuit

    图  6  SiC MOSFET关断波形图

    Figure  6.  SiC MOSFET turn-off waveforms

    图  7  MOSFET串联模型示意图

    Figure  7.  Schematic diagram of MOSFET series model

    图  8  考虑分布电容和缓冲电路的串联MOSFET等效电路

    Figure  8.  Equivalent circuit of series MOSFET considering distributed capacitor and snubber circuit

    图  9  等电位点电路图

    Figure  9.  Isoelectric point circuit diagram

    图  10  简化等效电路图

    Figure  10.  Simplified equivalent circuit diagram

    图  11  无缓冲电路的电压电流波形图

    Figure  11.  Voltage and current waveforms without snubber circuit

    图  12  m=1.1时的电压电流波形图

    Figure  12.  Voltage and current waveforms of m=1.1

    图  13  m=1.2时的电压电流波形图

    Figure  13.  Voltage and current waveforms of m=1.2

    图  14  无缓冲电路的两管电压波形图

    Figure  14.  Two-tube voltage waveforms without snubber circuit

    图  15  等参数缓冲电路的两管电压波形图

    Figure  15.  Two-tube voltage waveform of isoparametric snubber circuit

    图  16  非等参数缓冲电路的两管电压波形图

    Figure  16.  Two-tube voltage waveform of non-isoparametric snubber circuit

    表  1  拓扑工作模式

    Table  1.   Topology working mode

    pattern T1 T2 module voltage single tube current function
    1 on on 0 i1/2 over-current balancing
    2 on off 0 i1 conduction discharge
    3 off off V1 0 current shutoff
    4 off on 0 i1 conduction discharge
    下载: 导出CSV

    表  2  MOSFET工作模式

    Table  2.   Working modes of MOSFET

    operation mode Cgs Cgd Cds channel condition
    VgsVth and VdsVgsVth Ohmic Cgs Cgd2 Cds2 constant resistance Rds(on)
    VgsVth cut off Cgs Cgd1 Cds1 open circuit
    下载: 导出CSV
  • [1] 章雪亮. 聚变装置辅助加热系统逆变型直流高压电源技术研究[D]. 武汉: 华中科技大学, 2016

    Zhang Xueliang. Research on the technology of inverter type DC high voltage power supply for auxiliary heating system of fusion device[D]. Wuhan: Huazhong University of Science & Technology, 2016
    [2] Watanabe K, Kashiwagi M, Kawashima S, et al. Development of a dc 1 MV power supply technology for NB injectors[J]. Nuclear Fusion, 2006, 46(6): S332-S339. doi: 10.1088/0029-5515/46/6/S15
    [3] 余振雄. J-TEXT装置ECRH控制系统研究[D]. 武汉: 华中科技大学, 2017

    Yu Zhenxiong. Research of electron cyclotron resonance heating control system on J-TEXT[D]. Wuhan: Huazhong University of Science and Technology, 2017
    [4] Zhang Ming, Wang Dongyu, Ma Shaoxiang, et al. A novel series switch module in high-voltage applications[J]. Fusion Engineering and Design, 2019, 146: 2618-2623. doi: 10.1016/j.fusengdes.2019.04.057
    [5] Abbate C, Busatto G, Iannuzzo F. High-voltage, high-performance switch using series-connected IGBTs[J]. IEEE Transactions on Power Electronics, 2010, 25(9): 2450-2459. doi: 10.1109/TPEL.2010.2049272
    [6] Podlesak T F, Carter J L, McMurray J A. Demonstration of compact solid-state opening and closing switch utilizing GTOs in series[J]. IEEE Transactions on Electron Devices, 1991, 38(4): 706-711. doi: 10.1109/16.75193
    [7] Consoli A, Musumeci S, Oriti G, et al. Active voltage balancement of series connected IGBTs[C]//Proceedings of the Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting. 1995: 2754-2758.
    [8] Renz G, Holzschuh F, Zeyfang E. PFNs switched with stacked SCRs at 20 kV, 500 J, and 100 Hz REP-rate[C]//Proceedings of the 11th IEEE International Pulsed Power Conference. 1997: 390-395.
    [9] Welleman A, Fleischmann W, Kaesler W. Solid state on-off pulse switches using IGCT technology[C]//Proceedings of the IEEE 34th International Conference on Plasma Science. 2007: 1025-1028.
    [10] Dongye Zhonghao, Qi Lei, Cui Xiang, et al. A new approach to model reverse recovery process of a thyristor for HVdc circuit breaker testing[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1591-1601. doi: 10.1109/TPEL.2020.3007660
    [11] Luo Yifei, Xiao Fei, Liu Binli, et al. A physics-based transient electrothermal model of high-voltage press-pack IGBTs under HVdc interruption[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 5660-5669. doi: 10.1109/TPEL.2019.2948936
    [12] Xiao Huangqing, Xu Zheng, Xiao Liang, et al. Components sharing based integrated HVDC circuit breaker for meshed HVDC grids[J]. IEEE Transactions on Power Delivery, 2020, 35(4): 1856-1866. doi: 10.1109/TPWRD.2019.2955726
    [13] Wang Dongyu, Zhang Ming, Ma Shaoxiang, et al. A high-voltage solid-state switch based on submodule topology of SiC MOSFETs for J-TEXT tokamak[J]. IEEE Transactions on Plasma Science, 2020, 48(6): 1676-1680. doi: 10.1109/TPS.2019.2959623
    [14] Ma Shaoxiang, Shang Wentong, Wang Dongyu, et al. A reliable voltage clamping submodule based on SiC MOSFET for solid state switch[J]. Review of Scientific Instruments, 2021, 92: 024713. doi: 10.1063/5.0027135
    [15] Lu Ting, Zhao Zhengming, Ji Shiqi, et al. Active clamping circuit with status feedback for series-connected HV-IGBTs[J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3579-3590. doi: 10.1109/TIA.2014.2308356
    [16] Ji Shiqi, Lu Ting, Zhao Zhengming, et al. Series-connected HV-IGBTs using active voltage balancing control with status feedback circuit[J]. IEEE Transactions on Power Electronics, 2015, 30(8): 4165-4174. doi: 10.1109/TPEL.2014.2360189
    [17] Zarghani M, Mohsenzade S, Kaboli S. A fast and series-stacked IGBT switch with balanced voltage sharing for pulsed power applications[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2013-2021. doi: 10.1109/TPS.2016.2574126
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  64
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-09-07
  • 录用日期:  2023-09-19
  • 网络出版日期:  2023-11-09
  • 刊出日期:  2024-01-12

目录

    /

    返回文章
    返回