Modeling and analysis of power processing unit based on secondary-side LLC resonant converter
-
摘要: 随着航空航天技术的不断发展,航天器对于霍尔电推进功率处理单元(PPU)的需求不断提高,高增益、大功率以及高效的PPU成为研究的主流方向。LLC拓扑能够在全负载范围内实现软开关,因此在PPU阳极电源中具有广阔的应用前景。原边LLC因其原副边增益特性,给阳极电源高增益变换器的谐振电感设计带来极大的挑战。针对上述问题,提出了一种改进的副边LLC谐振拓扑,在保留原边LLC谐振电路软开关特性的同时,有效解决了谐振电感设计问题,使得PPU阳极电源具备高增益的性能。首先利用时域分析法建立了副边LLC拓扑数学模型,其次在模型的基础上给出其峰值增益的计算方法,最后通过一台样机验证了所建模型的正确性并验证了副边LLC电路的有效性。Abstract: With the continuous development of aerospace technology, the demand for Hall-electric propulsion power processing units (PPUs) in spacecraft is constantly increasing, and high-gain, high-power and high-efficiency PPUs have become the mainstream direction of research. The LLC topology enables soft switching over the full load range and therefore offers broad application prospects in PPU anode power supplies. Due to its primary and secondary gain characteristics, the primary LLC brings great challenges to the resonant inductance design of the high gain converter of the anode power supply. In view of the above problems, this paper proposes an improved secondary LLC resonant topology, which retains the soft switching characteristics of the primary LLC resonant circuit while effectively solving the resonant inductor design problem, so that the PPU anode power supply has high gain performance. In this paper, the mathematical model of the secondary LLC topology is first established by using the time domain analysis method, and then the calculation method of the peak gain is given on the basis of the model, and finally the correctness of the built model is verified by a prototype and the validity of the secondary LLC circuit is verified.
-
表 1 电路部分参数
Table 1. Main parameters of the circuit
output power
Po/Wresonant frequency
fr/kHzresonant inductance
Lr/μHresonant capacitor
Cr/μFadditional inductance
Lm/μHtransformer
ratio704 91.3 95 0.032 550 1∶8.42 -
[1] 陈新华, 田希晖, 苏凌宇, 等. 航天器推进理论[M]. 北京: 国防工业出版社, 2014: 1-2Chen Xinhua, Tian Xihui, Su Lingyu, et al. Theory of spacecraft propulsion[M]. Beijing: National Defense Industry Press, 2014: 1-2 [2] 李峰, 康庆, 邢杰, 等. 大功率电推进电源处理单元技术[J]. 北京航空航天大学学报, 2016, 42(8):1575-1583Li Feng, Kang Qing, Xing Jie, et al. Technology for power processing unit used in high power electric propulsion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1575-1583 [3] 张保平, 阮新波, 高波, 等. 空间电推进系统电源处理单元技术发展综述[J]. 电源学报, 2022, 20(5):42-50Zhang Baoping, Ruan Xinbo, Gao Bo, et al. Review of development of power processing unit technology for aerospace electric propulsion system[J]. Journal of Power Supply, 2022, 20(5): 42-50 [4] Bozak K E, Piñero L, Scheidegger R, et al. High input voltage, silicon carbide power processing unit performance demonstration[C]//Proceedings of the 13th International Energy Conversion Engineering Conference. 2015: 3900. [5] Santiago W, Bozak K E, Piñero L R, et al. High input voltage, power processing unit performance demonstration[C]//Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 2016: 5033. [6] José Antonio G A. Review of ESA experimental research activities for electric propulsion[J]. Review of Esa Experimental Research Activities for Electric Propulsion, 2012. [7] Soendker E, Hablitzel S, Tolentino A, et al. Power processing and flow control for a 100 kW Hall thruster system[C]//Proceedings of 2018 Joint Propulsion Conference. 2018: 4419. [8] 王少宁, 王卫国. 适用于30 cm离子推力器的5 kW电源处理单元设计[J]. 航天器工程, 2013, 22(5):74-79Wang Shaoning, Wang Weiguo. Design of a 5 kW modular power processing unit for 30cm ion thruster[J]. Spacecraft Engineering, 2013, 22(5): 74-79 [9] 马季军, 屈诚志, 吴晨昊, 等. 大功率处理单元阳极电源模块的研究[J]. 载人航天, 2019, 25(6):749-754Ma Jijun, Qu Chengzhi, Wu Chenhao, et al. Research on anode power supply for high power processing unit[J]. Manned Spaceflight, 2019, 25(6): 749-754 [10] Kim E H, Kwon B H. Zero-voltage-and zero-current-switching full-bridge converter with secondary resonance[J]. IEEE Transactions on Industrial Electronics, 2010, 57(3): 1017-1025. doi: 10.1109/TIE.2009.2029581 [11] Ruan Xinbo, Yan Yangguang. A novel zero-voltage and zero-current-switching PWM full-bridge converter using two diodes in series with the lagging leg[J]. IEEE Transactions on Industrial Electronics, 2001, 48(4): 777-785. doi: 10.1109/41.937410 [12] Zhang Junming, Zhang Fan, Xie Xiaogao, et al. A novel ZVS DC/DC converter for high power applications[J]. IEEE Transactions on Power Electronics, 2004, 19(2): 420-429. doi: 10.1109/TPEL.2003.823248 [13] Wu Xinke, Zhao Chen, Zhang Junming, et al. A novel phase shift controlled ZVZCS full bridge DC-DC converter: Analysis and design considerations[C]//Proceedings of the 39th IAS Annual Meeting Conference Record of the 2004 IEEE Industry Applications Conference. 2004: 1790-1796. [14] 吕文琪. 两级式宽输入电压范围阳极电源研究[D]. 深圳: 哈尔滨工业大学, 2021Lv Wenqi. Research on two-stage anode power supply with wide input voltage range[D]. Shenzhen: Harbin Institute of Technology, 2021 [15] 陈乃铭. 航天用宽输入宽输出电压范围的两级式直流变换器研究[D]. 南京: 南京航空航天大学, 2019: 12-69Chen Naiming. Research on two-stage DC/DC converter with wide input and wide output voltage range for aerospace application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 12-69 [16] 袁义生, 罗峰, 胡盼安. 一种桥型副边LLC谐振直流-直流变换器[J]. 中国电机工程学报, 2014, 34(36):6415-6425Yuan Yisheng, Luo Feng, Hu Pan’an. One bridge-type secondary-side LLC resonant DC-DC converter[J]. Proceedings of the CSEE, 2014, 34(36): 6415-6425 [17] Jia Pengyu, Su Zhe, Shao Tiancong, et al. An isolated high step-up converter based on the active secondary-side quasi-resonant loops[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 659-673. doi: 10.1109/TPEL.2021.3098852 [18] 刘小越, 谢运祥, 陈兵. 两种隔离式DC/DC变换器次级整流电路的比较[J]. 电气开关, 2008, 46(1):8-11Liu Xiaoyue, Xie Yunxiang, Chen Bing. Comparison of two isolated DC/DC conveter secondary rectifier[J]. Electric Switchgear, 2008, 46(1): 8-11 [19] 干方宇. 高功率密度/宽输入电压范围LLC谐振变换器的研究[D]. 杭州: 浙江大学, 2022Gan Fangyu. Research on high power density/wide input voltage range LLC resonant converter[D]. Hangzhou: Zhejiang University, 2022 [20] 闫振雷. LLC谐振变换器的简化时域分析及参数设计[D]. 北京: 北京交通大学, 2021Yan Zhenlei. Simplified time domain analysis and parameters design of LLC resonant converter[D]. Beijing: Beijing Jiaotong University, 2021 [21] 胡海兵, 王万宝, 孙文进, 等. LLC谐振变换器效率优化设计[J]. 中国电机工程学报, 2013, 33(18):48-56Hu Haibing, Wang Wanbao, Sun Wenjin, et al. Optimal efficiency design of LLC resonant converters[J]. Proceedings of the CSEE, 2013, 33(18): 48-56 -