[1] |
Kogelschatz U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications[J]. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1-46. doi: 10.1023/A:1022470901385
|
[2] |
Brandenburg R. Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments[J]. Plasma Sources Science and Technology, 2017, 26: 053001. doi: 10.1088/1361-6595/aa6426
|
[3] |
Homola T, Pongrác B, Zemánek M, et al. Efficiency of ozone production in coplanar dielectric barrier discharge[J]. Plasma Chemistry and Plasma Processing, 2019, 39(5): 1227-1242. doi: 10.1007/s11090-019-09993-6
|
[4] |
Sung T L, Teii S, Liu C M, et al. Surface catalytic effect of electrode materials on ozone dissociation in a cylindrical dielectric barrier discharge ozonizer[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2751-2755. doi: 10.1109/TPS.2012.2210447
|
[5] |
Wang Xiaojing, Wang Peng, Wang Qiao, et al. Efficient degradation of 4-fluorophenol under dielectric barrier discharge plasma treatment using Cu/Fe-AO-PAN catalyst: role of H2O2 production[J]. Chemical Engineering Journal, 2021, 420: 127577. doi: 10.1016/j.cej.2020.127577
|
[6] |
Liang Peng, Jiang Wanmin, Zhang Lan, et al. Experimental studies of removing typical VOCs by dielectric barrier discharge reactor of different sizes[J]. Process Safety and Environmental Protection, 2015, 94: 380-384. doi: 10.1016/j.psep.2014.09.003
|
[7] |
Osawa N, Kaga H, Fukuda Y, et al. Comparison of the ozone generation efficiency by two different discharge modes of dielectric barrier discharge[J]. The European Physical Journal—Applied Physics, 2011, 55: 13802. doi: 10.1051/epjap/2010100439
|
[8] |
Zhang Xuming, Lee B J, Im H G, et al. Ozone production with dielectric barrier discharge: effects of power source and humidity[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2288-2296. doi: 10.1109/TPS.2016.2601246
|
[9] |
Mastanaiah N, Banerjee P, Johnson J A, et al. Examining the role of ozone in surface plasma sterilization using dielectric barrier discharge (DBD) plasma[J]. Plasma Processes and Polymers, 2013, 10(12): 1120-1133. doi: 10.1002/ppap.201300108
|
[10] |
Fang Zhi, Liu Yuan, Liu Kun, et al. Surface modifications of polymethylmetacrylate films using atmospheric pressure air dielectric barrier discharge plasma[J]. Vacuum, 2012, 86(9): 1305-1312. doi: 10.1016/j.vacuum.2011.11.021
|
[11] |
Shao Tao, Zhang Cheng, Long Kaihua, et al. Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air[J]. Applied Surface Science, 2010, 256(12): 3888-3894. doi: 10.1016/j.apsusc.2010.01.045
|
[12] |
De Geyter N, Morent R, Van Vlierberghe S, et al. Effect of electrode geometry on the uniformity of plasma-polymerized methyl methacrylate coatings[J]. Progress in Organic Coatings, 2011, 70(4): 293-299. doi: 10.1016/j.porgcoat.2010.11.009
|
[13] |
Jiang Hui, Li Wenhui, Xu Yaozong, et al. Influence of segmented grounding electrodes on electrical characteristics in annular surface dielectric barrier discharge[J]. Journal of Physics D: Applied Physics, 2021, 54: 265203. doi: 10.1088/1361-6463/abf578
|
[14] |
Liu Feng, Chu Haijing, Zhuang Yue, et al. Influence of dielectric materials on discharge characteristics of coaxial DBD driven by nanosecond pulse voltage[J]. Plasma Research Express, 2020, 2: 034001. doi: 10.1088/2516-1067/abaa36
|
[15] |
Kettlitz M, Höft H, Hoder T, et al. Comparison of sinusoidal and pulsed-operated dielectric barrier discharges in an O2/N2 mixture at atmospheric pressure[J]. Plasma Sources Science and Technology, 2013, 22: 025003. doi: 10.1088/0963-0252/22/2/025003
|
[16] |
Wang Qian, Liu Feng, Miao Chuanrun, et al. Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources[J]. Plasma Science and Technology, 2018, 20: 035404. doi: 10.1088/2058-6272/aaa357
|
[17] |
李清泉, 马磊. 影响介质阻挡放电的因素[J]. 高电压技术, 2007, 33(9):10-12,16 doi: 10.13336/j.1003-6520.hve.2007.09.003Li Qingquan, Ma Lei. Experimental study of factors affecting dielectric-barrier discharge[J]. High Voltage Engineering, 2007, 33(9): 10-12,16 doi: 10.13336/j.1003-6520.hve.2007.09.003
|
[18] |
Jiang Nan, Guo Lianjie, Qiu Cheng, et al. Reactive species distribution characteristics and toluene destruction in the three-electrode DBD reactor energized by different pulsed modes[J]. Chemical Engineering Journal, 2018, 350: 12-19. doi: 10.1016/j.cej.2018.05.154
|
[19] |
商克峰, 曹晓萌, 王肖静, 等. 高压电极构型对DBD装置放电特性及臭氧生成的影响[J]. 高电压技术, 2016, 42(5):1394-1400 doi: 10.13336/j.1003-6520.hve.20160412004Shang Kefeng, Cao Xiaomeng, Wang Xiaojing, et al. Effect of high voltage electrode geometry on the discharge characteristics and the ozone generation of a DBD device[J]. High Voltage Engineering, 2016, 42(5): 1394-1400 doi: 10.13336/j.1003-6520.hve.20160412004
|
[20] |
Chen Ying, Fu Mengji, Shang Kefeng. Discharge characteristics and ozone generation analysis of dual-power excited three-electrode DBD[C]//Proceedings of the 7th International Symposium on Advances in Electrical, Electronics and Computer Engineering. 2022: 1229417.
|
[21] |
Chang Zhengshi, Shi Xingmin, Zhang Guanjun, et al. Effects of atmospheric DBCD plasma on three kinds of typical microorganisms[J]. IEEE Transactions on Plasma Science, 2013, 41(7): 1703-1708. doi: 10.1109/TPS.2013.2262954
|