留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三电极结构在双源激励下的介质阻挡放电特性

姜松 张征东 王永刚 李孜 吴忠航

姜松, 张征东, 王永刚, 等. 三电极结构在双源激励下的介质阻挡放电特性[J]. 强激光与粒子束, 2024, 36: 025008. doi: 10.11884/HPLPB202436.230173
引用本文: 姜松, 张征东, 王永刚, 等. 三电极结构在双源激励下的介质阻挡放电特性[J]. 强激光与粒子束, 2024, 36: 025008. doi: 10.11884/HPLPB202436.230173
Jiang Song, Zhang Zhengdong, Wang Yonggang, et al. Dielectric barrier discharge characteristics of three-electrode structure under dual-source excitation[J]. High Power Laser and Particle Beams, 2024, 36: 025008. doi: 10.11884/HPLPB202436.230173
Citation: Jiang Song, Zhang Zhengdong, Wang Yonggang, et al. Dielectric barrier discharge characteristics of three-electrode structure under dual-source excitation[J]. High Power Laser and Particle Beams, 2024, 36: 025008. doi: 10.11884/HPLPB202436.230173

三电极结构在双源激励下的介质阻挡放电特性

doi: 10.11884/HPLPB202436.230173
基金项目: 国家自然科学基金项目(12005128、12205192、12375251)
详细信息
    作者简介:

    姜 松,jecifer@163.com

    通讯作者:

    吴忠航,wuzh@sumhs.edu.cn

  • 中图分类号: TM89

Dielectric barrier discharge characteristics of three-electrode structure under dual-source excitation

  • 摘要: 介质阻挡放电 (DBD) 在工业中得到广泛应用,但效率限制了它的进一步应用。提出了一种DBD结构和针板结构相结合的三电极结构。将正极性脉冲电源施加在DBD电极上,负极性脉冲电源施加到针板电极上。分析了不同结构下三电极DBD的放电特性、现象和光谱强度。结果表明,三电极结构更加有利于DBD放电通道的产生,其放电均匀性、发光强度均强于双电极DBD,特别是在丝网接地电极条件下,放电更加强烈。当三种电极结构正极性电压维持在11 kV,负极性电压为−5 kV时,丝网接地三电极中DBD的放电电流峰值达到1.54 A,而实心接地三电极和传统双电极中DBD的放电电流峰值为1.14 A和0.74 A。在负极性脉冲维持期间,针网间隙处于击穿状态,DBD放电出现很大的放电电流。在三电极结构中,随着施加在针板上负极性电压的升高也使三电极DBD放电更加强烈。不同结构下的DBD的放电光谱表明在丝网接地时三电极DBD激发粒子的光谱强度最强。这一趋势与DBD放电电流和功率一致。
  • 图  1  实验系统示意图

    Figure  1.  Schematic diagram of the experimental system

    图  2  电极结构示意图

    Figure  2.  Schematic diagram of the three-electrode configurations

    图  3  高压脉冲电源电压输出波形图

    Figure  3.  Output voltage waveforms of high-voltage pulse power supply

    图  4  不同电极结构放电图像

    Figure  4.  Discharge images of different electrode structures

    图  5  不同电极结构下DBD放电的电压-电流波形图

    Figure  5.  Voltage current waveform of DBD discharge under different electrode structures

    图  6  双电极和三电极DBD放电电流对比

    Figure  6.  Discharge current comparison between double-electrode and three-electrode DBDs

    图  7  不同结构的DBD在不同正极性压下的放电功率

    Figure  7.  Discharge power of DBD under different positive voltage with different structures

    图  8  不同结构的DBD在不同负极性电压下的放电功率

    Figure  8.  Discharge power of DBD under different negative voltage with different structures

    图  9  不同结构下的DBD发射光谱

    Figure  9.  Emission spectra under different electrode structures

  • [1] Kogelschatz U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications[J]. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1-46. doi: 10.1023/A:1022470901385
    [2] Brandenburg R. Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments[J]. Plasma Sources Science and Technology, 2017, 26: 053001. doi: 10.1088/1361-6595/aa6426
    [3] Homola T, Pongrác B, Zemánek M, et al. Efficiency of ozone production in coplanar dielectric barrier discharge[J]. Plasma Chemistry and Plasma Processing, 2019, 39(5): 1227-1242. doi: 10.1007/s11090-019-09993-6
    [4] Sung T L, Teii S, Liu C M, et al. Surface catalytic effect of electrode materials on ozone dissociation in a cylindrical dielectric barrier discharge ozonizer[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2751-2755. doi: 10.1109/TPS.2012.2210447
    [5] Wang Xiaojing, Wang Peng, Wang Qiao, et al. Efficient degradation of 4-fluorophenol under dielectric barrier discharge plasma treatment using Cu/Fe-AO-PAN catalyst: role of H2O2 production[J]. Chemical Engineering Journal, 2021, 420: 127577. doi: 10.1016/j.cej.2020.127577
    [6] Liang Peng, Jiang Wanmin, Zhang Lan, et al. Experimental studies of removing typical VOCs by dielectric barrier discharge reactor of different sizes[J]. Process Safety and Environmental Protection, 2015, 94: 380-384. doi: 10.1016/j.psep.2014.09.003
    [7] Osawa N, Kaga H, Fukuda Y, et al. Comparison of the ozone generation efficiency by two different discharge modes of dielectric barrier discharge[J]. The European Physical Journal—Applied Physics, 2011, 55: 13802. doi: 10.1051/epjap/2010100439
    [8] Zhang Xuming, Lee B J, Im H G, et al. Ozone production with dielectric barrier discharge: effects of power source and humidity[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2288-2296. doi: 10.1109/TPS.2016.2601246
    [9] Mastanaiah N, Banerjee P, Johnson J A, et al. Examining the role of ozone in surface plasma sterilization using dielectric barrier discharge (DBD) plasma[J]. Plasma Processes and Polymers, 2013, 10(12): 1120-1133. doi: 10.1002/ppap.201300108
    [10] Fang Zhi, Liu Yuan, Liu Kun, et al. Surface modifications of polymethylmetacrylate films using atmospheric pressure air dielectric barrier discharge plasma[J]. Vacuum, 2012, 86(9): 1305-1312. doi: 10.1016/j.vacuum.2011.11.021
    [11] Shao Tao, Zhang Cheng, Long Kaihua, et al. Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air[J]. Applied Surface Science, 2010, 256(12): 3888-3894. doi: 10.1016/j.apsusc.2010.01.045
    [12] De Geyter N, Morent R, Van Vlierberghe S, et al. Effect of electrode geometry on the uniformity of plasma-polymerized methyl methacrylate coatings[J]. Progress in Organic Coatings, 2011, 70(4): 293-299. doi: 10.1016/j.porgcoat.2010.11.009
    [13] Jiang Hui, Li Wenhui, Xu Yaozong, et al. Influence of segmented grounding electrodes on electrical characteristics in annular surface dielectric barrier discharge[J]. Journal of Physics D: Applied Physics, 2021, 54: 265203. doi: 10.1088/1361-6463/abf578
    [14] Liu Feng, Chu Haijing, Zhuang Yue, et al. Influence of dielectric materials on discharge characteristics of coaxial DBD driven by nanosecond pulse voltage[J]. Plasma Research Express, 2020, 2: 034001. doi: 10.1088/2516-1067/abaa36
    [15] Kettlitz M, Höft H, Hoder T, et al. Comparison of sinusoidal and pulsed-operated dielectric barrier discharges in an O2/N2 mixture at atmospheric pressure[J]. Plasma Sources Science and Technology, 2013, 22: 025003. doi: 10.1088/0963-0252/22/2/025003
    [16] Wang Qian, Liu Feng, Miao Chuanrun, et al. Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources[J]. Plasma Science and Technology, 2018, 20: 035404. doi: 10.1088/2058-6272/aaa357
    [17] 李清泉, 马磊. 影响介质阻挡放电的因素[J]. 高电压技术, 2007, 33(9):10-12,16 doi: 10.13336/j.1003-6520.hve.2007.09.003

    Li Qingquan, Ma Lei. Experimental study of factors affecting dielectric-barrier discharge[J]. High Voltage Engineering, 2007, 33(9): 10-12,16 doi: 10.13336/j.1003-6520.hve.2007.09.003
    [18] Jiang Nan, Guo Lianjie, Qiu Cheng, et al. Reactive species distribution characteristics and toluene destruction in the three-electrode DBD reactor energized by different pulsed modes[J]. Chemical Engineering Journal, 2018, 350: 12-19. doi: 10.1016/j.cej.2018.05.154
    [19] 商克峰, 曹晓萌, 王肖静, 等. 高压电极构型对DBD装置放电特性及臭氧生成的影响[J]. 高电压技术, 2016, 42(5):1394-1400 doi: 10.13336/j.1003-6520.hve.20160412004

    Shang Kefeng, Cao Xiaomeng, Wang Xiaojing, et al. Effect of high voltage electrode geometry on the discharge characteristics and the ozone generation of a DBD device[J]. High Voltage Engineering, 2016, 42(5): 1394-1400 doi: 10.13336/j.1003-6520.hve.20160412004
    [20] Chen Ying, Fu Mengji, Shang Kefeng. Discharge characteristics and ozone generation analysis of dual-power excited three-electrode DBD[C]//Proceedings of the 7th International Symposium on Advances in Electrical, Electronics and Computer Engineering. 2022: 1229417.
    [21] Chang Zhengshi, Shi Xingmin, Zhang Guanjun, et al. Effects of atmospheric DBCD plasma on three kinds of typical microorganisms[J]. IEEE Transactions on Plasma Science, 2013, 41(7): 1703-1708. doi: 10.1109/TPS.2013.2262954
  • 加载中
图(9)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  170
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-09
  • 修回日期:  2023-09-13
  • 录用日期:  2023-09-27
  • 网络出版日期:  2023-09-16
  • 刊出日期:  2024-01-12

目录

    /

    返回文章
    返回