Research on switching devices simplification of multistage XRAM pulse power supply
-
摘要: 电磁发射的能力主要取决于脉冲功率电源系统,脉冲功率电源的优化是电磁发射技术取得进一步突破的关键技术之一。电感储能型脉冲功率电源在能量密度方面有很大优势,具备深远的发展潜力。基于串联充电和并联放电的XRAM型脉冲功率电源具有结构简单、可扩展性强的优点。分析了多级XRAM电源拓扑结构中二极管器件的工作原理,按照功能分类,提出了简化二极管器件数量的方案。建立了基于ICCOS的30级XRAM型脉冲功率电源带轨道炮负载的仿真模型,每5级为一个电源模块,系统总储能为365 kJ,发射效率近20%。通过对比简化前后模型性能指标的仿真结果,证明了简化第一级的下臂二极管不利于多级电源的运行。简化多级拓扑中的最后一级逆流电容串联二极管,以及在优化逆流电容参数的前提下简化充电晶闸管的反并二极管,对电源模块的放电电流没有明显影响。Abstract: The ability of electromagnetic emission mainly depends on the pulse power supply system, and the optimization of pulse power supply is one of the key technologies to make further breakthroughs in electromagnetic emission technology. Inductive energy storage type pulse power supply has great advantages in energy density and has far-reaching development potential. The XRAM pulse power supply based on series charging and parallel discharge has the advantages of simple structure and strong expandability. In this paper, the working principle of diode devices in multilevel XRAM power supply topology is analyzed, and a scheme is proposed to simplify the number of diode devices based on function classification. A simulation model is established for a 30-stage XRAM pulse power supply with a railgun load using ICCOS. Each power module consists of five stages, resulting in a total energy storage capacity of 365 kJ for the system, with an emission efficiency of nearly 20%. By comparing the simulation results of model performance indexes before and after simplification, it is proved that the simplified lower arm diode of the first stage is unfavorable to the operation of the multistage power supply. Simplifying the final countercurrent capacitor series diode in the multistage topology, and the antiparallel diode of charging thyristor under the premise of optimizing the countercurrent capacitor parameters, have no obvious effect on the discharge current of the power module.
-
Key words:
- electromagnetic launching /
- inductive pulsed power supply /
- XRAM /
- diode /
- modularization
-
表 1 系统仿真参数选取
Table 1. Selection of system simulation parameters
symbol quantity value Us voltage of single module charging capacitor 2440 V Ls single stage energy storage inductance 75 μH Rs single stage energy storage resistance 3 mΩ C countercurrent capacitance 100 μH UC recharge voltage of countercurrent capacitor 3500 V L0 initial rail inductance 0.1 μH R0 initial rail resistance 0.1 mΩ $ {L_{\text{r}}}^\prime $ rail inductance gradient 0.5 μH/m $ {R_{\text{r}}}^\prime $ rail resistance gradient 0.1 mΩ/m RVC velocity skin effect contact resistance constant 10−8 Ω/(m/s)−2/3 μh static friction coefficient 0.05 μg limit value of dynamic friction coefficient 0.45 c formula constant of sliding friction coefficient 0.03 Sc contact area between armature and rail 5.5×10−3 m2 A cross-sectional area of projectile 6.25×10−4 m2 k1 ratio of radial stress to axial stress 0.025 ρ density of dry air 1.293 g/L C0 air drag coefficient 0.5 表 2 仿真结果对比
Table 2. Comparison of simulation results
simulation
typepeak load
current Im/kA50%~50% pulse
width Tw/msprojectile exit
velocity vm/(m/s)emission efficiency
η/%emission efficiency without
countercurrent capacitance η0/%initial model 540.4 1.820 1532 18.39 19.32 remove D53 540.8 1.820 1534 18.44 19.37 remove D12 513.2 1.772 1540 18.57 19.51 remove D53 and D12 513.2 1.774 1541 18.62 19.55 remove D1~D5 540.7 1.819 1532 18.39 19.32 表 3 充电晶闸管端电压变化
Table 3. Voltage change of charging thyristor
recharge voltage of countercurrent
capacitance Ucc /VT1 maximum reverse
voltage Urm1/VT2 maximum reverse
voltage Urm2/VT1 maximum forward
voltage Ufm1/VT2 maximum forward
voltage Ufm2/V3500 −1388 −1389 991.2 392.6 3700 −1602 −1603 993.8 395.8 4100 −2304 −2305 999.3 400.7 4300 −2761 −2762 1002.0 403.4 4700 −3486 −3487 1008.0 409.0 4900 −3559 −3560 1011.0 412.0 表 4 电源模块简化程度与级数的关系
Table 4. Relationship between simplification degree and series of power modules
power supply
stagestotal number of switching devices
before simplificationtotal number of switching devices
after simplificationquantity proportion of
simplification/%2 11 8 27.3 3 16 12 25.0 4 21 16 23.8 5 26 20 23.1 6 31 24 22.6 7 36 28 22.2 8 41 32 22.0 9 46 36 21.7 10 51 40 21.6 -
[1] 马山刚, 于歆杰, 李臻. 用于电磁发射的电感储能型脉冲电源的研究现状综述[J]. 电工技术学报, 2015, 30(24):222-228,236 doi: 10.3969/j.issn.1000-6753.2015.24.028Ma Shangang, Yu Xinjie, Li Zhen. A review of the current research situation of inductive pulsed-power supplies for electromagnetic launch[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 222-228,236 doi: 10.3969/j.issn.1000-6753.2015.24.028 [2] Liebfried O, Hundertmark S, Frings P. Inductive pulsed power supply for a railgun artillery system[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2550-2555. doi: 10.1109/TPS.2019.2903725 [3] 李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4):1052-1064 doi: 10.13336/j.1003-6520.hve.2014.04.014Li Jun, Yan Ping, Yuan Weiqun. Electromagnetic gun technology and its development[J]. High Voltage Engineering, 2014, 40(4): 1052-1064 doi: 10.13336/j.1003-6520.hve.2014.04.014 [4] Kanter M, Pokrvailo A, Shaked N, et al. Factors in inductive storage system design[C]//Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference. 1995: 186-191. [5] Yu Xinjie, Liu Xukun. Overview of circuit topologies for inductive pulsed power supplies[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(3): 265-272. doi: 10.23919/TEMS.2017.8086105 [6] Liebfried O. Review of inductive pulsed power generators for railguns[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1108-1114. doi: 10.1109/TPS.2017.2686648 [7] Liu Xukun, Yu Xinjie. A new pulse-compression circuit with residual energy recovered[C]//2018 IEEE International Symposium on Circuits and Systems (ISCAS). 2018: 1-4. [8] Liebfried O, Brommer V. A four-stage XRAM generator as inductive pulsed power supply for a small-caliber railgun[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2805-2809. doi: 10.1109/TPS.2013.2257873 [9] DedieP, Brommer V, Scharnholz S. Experimental realization of an eight-stage XRAM generator based on ICCOS semiconductor opening switches, fed by a magnetodynamic storage system[J]. IEEE Transactions on Magnetics, 2009, 45(1): 266-271. doi: 10.1109/TMAG.2008.2008418 [10] DediéP, Brommer V, Scharnholz S. Twenty-stage toroidal XRAM generator switched by countercurrent thyristors[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 263-267. doi: 10.1109/TPS.2010.2055168 [11] Dedie P, Brommer V. Wire explosion fed by a 32-kJ XRAM generator switched by semiconductor elements[C]//2009 IET European Pulsed Power Conference. 2009: 1-4. [12] Liebfried O, Roch M. Augmented railgun with integrated XRAM current multiplication[C]//2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC). 2014: 279-282. [13] LiebfriedO, BrommerV. Demonstration of a 1 MJ XRAM generator supplying a medium caliber railgun[J]. IEEE Access, 2020, 8: 225018-225031. doi: 10.1109/ACCESS.2020.3044441 [14] 于歆杰, 初祥祥. 串充并放型电感储能脉冲电源XRAM的解耦改进[J]. 清华大学学报(自然科学版), 2012, 52(5):710-714 doi: 10.16511/j.cnki.qhdxxb.2012.05.026Yu Xinjie, Chu Xiangxiang. Decoupling to improve XRAM inductive pulse power sources with series charging and parallel discharging characteristics[J]. Journal of Tsinghua University(Science and Technology), 2012, 52(5): 710-714 doi: 10.16511/j.cnki.qhdxxb.2012.05.026 [15] EngelT G, Neri J M, Veracka M J. Characterization of the velocity skin effect in the surface layer of a railgun sliding contact[J]. IEEE Transactions on Magnetics, 2008, 44(7): 1837-1844. doi: 10.1109/TMAG.2008.922310 [16] BarberJ P, Challita A. Velocity effects on metal armature contact transition (railguns)[J]. IEEE Transactions on Magnetics, 1993, 29(1): 733-738. doi: 10.1109/20.195667 [17] Aigner S, Igenbergs E. Friction and ablation measurements in a round bore railgun[J]. IEEE Transactions on Magnetics, 1989, 25(1): 33-39. doi: 10.1109/20.22500 [18] Liang Zhi, Dai Ling, Feng Yongjie, et al. Modeling and parameter study of electromagnetic launch system driven by inductive pulsed power supply[C]//22nd International Symposium on High Voltage Engineering. 2021: 784-789. -