High speed package-on-package structure designed for SiC-MOSFET and its performance evaluation
-
摘要: 作为脉冲系统的核心部件,开关承担着脉冲成形、功率调制等重要作用,开关通断速度往往决定脉冲上升时间,高速开关是纳秒短脉冲形成的关键。提出一种高速SiC-MOSFET叠层封装结构,整体布局无引线、无外接,具有极低寄生电感。开展了电磁场仿真研究,揭示了脉冲形成过程中封装多介质界面电磁场分布规律,明确了封装结构电磁薄弱环节,为进一步绝缘优化提供指导。搭建双脉冲测试平台,对研制的SiC-MOSFET叠层封装开关与同芯片商用TO-263-7封装开关的动态性能进行测试。结果表明,大电流工况下,所提封装电流开通速度提升48%,关断速度提升50%,开通损耗降低54.6%,关断损耗降低62.8%,实验结果验证了所提叠层封装结构对开关动态性能的改善。
-
关键词:
- 脉冲功率开关 /
- SiC-MOSFET /
- 开关封装结构 /
- 双脉冲测试 /
- 开关动态性能
Abstract: As the core component of pulse power system, switch plays an important role in pulse forming and power modulation. Usually, the rise time of the pulse generated is determined by the on-off speed of switch and the high-speed switch is vital to the formation of nanosecond short pulses. Therefore, this paper proposes a high-speed SiC-MOSFET package on package structure. The overall layout has no lead or external connection, and has very low parasitic inductance. In this paper, the electromagnetic field simulation research of the proposed package is carried out, and the electromagnetic field distribution of the multi-media interface of the package is revealed during the pulse formation process. The electromagnetic weak link of the package structure is clarified, which provides guidance for further insulation optimization. A dual-pulse test platform was built to compare the dynamic performance of the proposed package-on-package structure switch and the commercial TO-263-7 package switch. The experimental results show that under high current conditions, the proposed packaging improves the turnning off by 48%, the turnning off speed by 50%, the turnning on loss by 54.6%, and the turnning off loss by 62.8%. The experimental results verify the improvement effect of the package-on-package structure on the switch dynamic performance. -
表 1 特性评估实验参数
Table 1. Experimental parameters for characteristic evaluation
Csave/μF Lsave/μH Ug.sta-off/V Rg.current/mΩ Ug.on/V Ug.off/V Rdamp/Ω chip of PoP 5 75 −9 20 15 −9 5 CPM3-0065-1000B 表 2 额定电流36 A时TO-263与PoP封装开关的参数对比
Table 2. Comparison of TO-263 and PoP switch parameters at a rated current of 36 A
package Uds(turn-on)/ns Uds(turn-off)/ns id(turn-on)/ns id(turn-off)/ns Ploss(turn-on)/μJ Ploss(turn-off)/μJ Uds/V TO-263 4.3 2.7 6.1 23.8 80.9 320.1 954 PoP 4.0 2.6 4.1 6.8 69.9 212.3 955 表 3 极限脉冲电流90 A时TO-263与PoP封装开关的参数对比
Table 3. Comparison of TO-263 and PoP switch parameters when the limit pulse current is 90 A
package Uds(turn-on)/ns Uds(turn-off)/ns id(turn-on)/ns id(turn-off)/ns Ploss(turn-on)/μJ Ploss(turn-off)/μJ Uds/V TO-263 3.8 2.2 22.9 15.8 285.8 1168.4 739 PoP 3.4 2.1 11.9 7.9 129.5 433.8 735 -
[1] 丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002 doi: 10.11884/HPLPB202032.200040Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040 [2] 李永龙, 袁雪林, 刘九龙, 等. 基于低轨卫星的分布式超宽带电磁脉冲对地面接收机干扰技术[J]. 强激光与粒子束, 2023, 35:033006 doi: 10.11884/HPLPB202335.220225Li Yonglong, Yuan Xuelin, Liu Jiulong, et al. Jamming technology of distributed ultra-wideband electromagnetic pulse to ground receivers based on low-orbit satellites[J]. High Power Laser and Particle Beams, 2023, 35: 033006 doi: 10.11884/HPLPB202335.220225 [3] 江伟华. 高重复频率脉冲功率技术及其应用: (6)代表性的应用[J]. 强激光与粒子束, 2014, 26:030201 doi: 10.3788/HPLPB20142603.30201Jiang Weihua. Repetition rate pulsed power technology and its applications: (VI) typical applications[J]. High Power Laser and Particle Beams, 2014, 26: 030201 doi: 10.3788/HPLPB20142603.30201 [4] Jiang Weihua, Yatsui K, Takayama K, et al. Compact solid-state switched pulsed power and its applications[J]. Proceedings of the IEEE, 2004, 92(7): 1180-1196. doi: 10.1109/JPROC.2004.829003 [5] 刘红梅, 董守龙, 宁郡怡, 等. 纳秒脉冲高频透膜效应优先杀伤化疗抗性肿瘤细胞的仿真与实验研究[J]. 电工技术学报, 2019, 34(22):4839-4848 doi: 10.19595/j.cnki.1000-6753.tces.181456Liu Hongmei, Dong Shoulong, Ning Junyi, et al. Simulation and experimental study on preferential killing of chemoresistance tumor cells induced by the high-frequency permeation effect of nanosecond pulse field[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4839-4848 doi: 10.19595/j.cnki.1000-6753.tces.181456 [6] 陈杰, 梁华, 魏彪, 等. 参数化纳秒脉冲电源激励下表面介质阻挡放电特性[J]. 高电压技术, 2019, 45(10):3365-3374 doi: 10.13336/j.1003-6520.hve.20181121002Chen Jie, Liang Hua, Wei Biao, et al. Discharge characteristics of surface dielectric barrier discharge driven by parameterized nanosecond pulsed power supply[J]. High Voltage Engineering, 2019, 45(10): 3365-3374 doi: 10.13336/j.1003-6520.hve.20181121002 [7] 江进波, 陈锐, 赵青, 等. 脉冲变压器驱动SiC MOSFET型Marx同步特性[J]. 强激光与粒子束, 2023, 35:085002 doi: 10.11884/HPLPB202335.230108Jiang Jinbo, Chen Rui, Zhao Qing, et al. Synchronous characteristics of SiC MOSFET driven by pulse transformer for Marx generator[J]. High Power Laser and Particle Beams, 2023, 35: 085002 doi: 10.11884/HPLPB202335.230108 [8] RaoJunfeng, Liu Kefu, QiuJian. All solid-state nanosecond pulsed generators based on Marx and magnetic switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1123-1128. doi: 10.1109/TDEI.2013.6571426 [9] Grekhov I V. Pulse power generation in nano- and subnanosecond range by means of ionizing fronts in semiconductors: the state of the art and future prospects[J]. IEEE Transactions on Plasma Science, 2010, 38(5): 1118-1123. doi: 10.1109/TPS.2010.2043857 [10] Sugai T, Jiang Weihua, Tokuchi A. Influence of forward pumping current on current interruption by semiconductor opening switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 1971-1975. doi: 10.1109/TDEI.2015.004989 [11] Yu Liang, Liao Yixin, RenLvheng, et al. High repetition frequency subnanosecond avalanche Marx generator[J]. IEEE Transactions on Plasma Science, 2023, 51(6): 1477-1484. doi: 10.1109/TPS.2023.3270355 [12] 梁琳, 颜小雪, 黄鑫远, 等. 半导体脉冲功率开关器件综述[J]. 中国电机工程学报, 2022, 42(23):8631-8651 doi: 10.13334/j.0258-8013.pcsee.212101Liang Lin, Yan Xiaoxue, Huang Xinyuan, et al. Review on semiconductor pulsed power switching devices[J]. Proceedings of the CSEE, 2022, 42(23): 8631-8651 doi: 10.13334/j.0258-8013.pcsee.212101 [13] 秦海鸿, 谢斯璇, 卜飞飞, 等. SiC MOSFET栅源电压评估及驱动回路参数优化设计方法[J]. 中国电机工程学报, 2022, 42(18):6823-6834Qin Haihong, Xie Sixuan, Bu Feifei, et al. Gate-source voltage evaluation and parameter optimized designed method of driving circuit for SiC MOSFET[J]. Proceedings of the CSEE, 2022, 42(18): 6823-6834 [14] Ma Jiuxin, Yu Liang, Ren Lvheng, et al. Ultrafast gate driver with GaN HEMTs for ns-pulse generator using SiC MOSFET[J]. IEEE Transactions on Plasma Science, 2023: 1-10. [15] 梁美, 郑琼林, 可翀, 等. SiC MOSFET、Si CoolMOS和IGBT的特性对比及其在DAB变换器中的应用[J]. 电工技术学报, 2015, 30(12):41-50 doi: 10.3969/j.issn.1000-6753.2015.12.006Liang Mei, Zheng Qionglin, Ke Chong, et al. Performance comparison of SiC MOSFET, Si CoolMOS and IGBT for DAB converter[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 41-50 doi: 10.3969/j.issn.1000-6753.2015.12.006