Development of a MV level peaking capacitor integrated capacitor voltage divider
-
摘要: 峰化电容器由于结构紧凑一般采用间接测量其承受的电压,而峰化电容电压的直接测量一直是难以解决的问题。为了解决该问题,以峰化电容器为基础,研制了一种新型结构的电阻补偿式自积分型峰化电容一体化电容分压器。其次,根据分压器的新型结构分析了峰化电容一体化电容分压器的理论分压比,给出了理论分压比计算公式,分析了影响低频响应的因素并进行了电路仿真验证。同时,开展了方波标定实验,得到了两个探头的分压比及响应时间,且探头响应时间均小于6.2 ns。此外,为了得到更准确的分压比并验证正常工作状态下该一体化电容分压器分压比的稳定性,进行了高压在线标定实验,得到了1#探头分压比为
11071 ,2#探头分压比为15148 。且在更高电压等级下,该电容分压器探头的测量相对误差较小,分压比稳定性良好。Abstract: Peaking capacitors, due to their compact structure, generally use indirect measurement of the voltage they bear, and direct measurement of their voltage has always been a difficult problem to solve. To solve this problem, we developed a new type of resistance compensation type self-integrating peak capacitor integrated capacitor voltage divider based on peaking capacitors. Secondly, based on the new structure of the voltage divider, the theoretical voltage ratio of the peak capacitance integrated capacitor voltage divider was analyzed. The calculation formula for the theoretical voltage ratio and the analysis of factors affecting low-frequency response were provided, and circuit simulation verification was carried out. At the same time, square wave calibration experiments were conducted, and the partial pressure ratio and response time of the two probes were obtained, and the response time of the probes was less than 6.2 ns. In addition, to obtain a more accurate voltage ratio and verify the stability of the voltage ratio of the integrated capacitor voltage divider under normal working conditions, high-voltage online calibration experiments were conducted, and the voltage ratio of probe 1 was11071 and probe 2 was15148 . Moreover, at higher voltage levels, the relative measurement error of the capacitive voltage divider probe is relatively small, and the voltage divider ratio has good stability. -
表 1 低压臂电容及补偿电阻实测值
Table 1. Measured value of low voltage arm capacitance and compensation resistor
probe number compensation resistance/kΩ low voltage arm capacitance/nF R1C2/μs 1# 2.395 3.343 8.2 2# 2.412 4.846 11.7 表 2 电压探头对不同脉宽信号的响应仿真结果
Table 2. Simulation results of voltage probe response to different pulse width signals
pulse width τ R1C2/τ flat top descent/% R1C2/τ flat top descent/% 1# 2# 100 82.0 1.0 117.0 0.8 500 16.4 5.1 23.4 3.7 1000 8.2 10.0 11.7 6.6 表 3 两探头的响应时间与分压比
Table 3. Response time and division ratio of two probes
probe number source signal leading time/ns measuring signal leading time/ns response time/ns voltage division ratio 1# 12.00 12.80 4.45 13444 2# 11.52 13.12 6.28 17314 表 4 更高等级峰化电容耐受电压测量结果
Table 4. Response time and division ratio of two probes
Marx main
circuit charging
voltage/kVpeak capacitance
voltage measured
by 1# probe/kVpeak capacitance
voltage measured by
2# probe/kV2# probe actual
measurement
signal/V2# probe voltage
division
ratio2# probe average
voltage division
ratio30 496.42 495.25 32.69 15185 15283 35 583.03 579.42 38.25 15242 15283 40 671.22 666.02 43.97 15265 15283 45 779.68 779.02 51.23 15219 15283 48 825.21 806.31 53.23 15502 15283 -
[1] 高景明, 刘永贵, 杨建华. 一种电容补偿型高压电容分压器的设计[J]. 高电压技术, 2007, 33(6):76-79 doi: 10.3969/j.issn.1003-6520.2007.06.019Gao Jingming, Liu Yonggui, Yang Jianhua. Design of capacitance-compensated capacitive divider for high-voltage pulse measurement[J]. High Voltage Engineering, 2007, 33(6): 76-79 doi: 10.3969/j.issn.1003-6520.2007.06.019 [2] Yu Binxiong, Li Rui, Su Jiancang, et al. Analysis of the match problem of a capacitive voltage divider with a long measurement cable[J]. Measurement Science and Technology, 2017, 28: 095009. doi: 10.1088/1361-6501/aa7c2b [3] 卫兵, 傅贞, 王玉娟, 等. 脉冲功率装置中电容分压器的设计和应用[J]. 高电压技术, 2007, 33(12):39-43 doi: 10.3969/j.issn.1003-6520.2007.12.010Wei Bing, Fu Zhen, Wang Yujuan, et al. Design and performance of capacitive divider for high-voltage pulse measurement[J]. High Voltage Engineering, 2007, 33(12): 39-43 doi: 10.3969/j.issn.1003-6520.2007.12.010 [4] Ekdahl C A. Voltage and current sensors for a high-density z-pinch experiment[J]. Review of Scientific Instruments, 1980, 51(12): 1645-1648. doi: 10.1063/1.1136140 [5] 张永辉, 常安碧, 甘延青, 等. 一种同轴高压电容分压器的设计[J]. 高电压技术, 2003, 29(1):37-38,41 doi: 10.3969/j.issn.1003-6520.2003.01.017Zhang Yonghui, Chang Anbi, Gan Yanqing, et al. Design of a high voltage coaxial capacitive voltage divider[J]. High Voltage Engineering, 2003, 29(1): 37-38,41 doi: 10.3969/j.issn.1003-6520.2003.01.017 [6] 潘洋, 严萍, 袁伟群. 纳秒脉冲电容分压器测量系统分析及波形重建[J]. 高电压技术, 2005, 31(2):53-55,75 doi: 10.3969/j.issn.1003-6520.2005.02.021Pan Yang, Yan Ping, Yuan Weiqun. Analysis and waveform reconstruction of nanosecond pulse voltage divider measurement system[J]. High Voltage Engineering, 2005, 31(2): 53-55,75 doi: 10.3969/j.issn.1003-6520.2005.02.021 [7] 卫兵, 方东凡, 卿燕玲, 等. 亚纳秒脉冲高电压测量探头[J]. 强激光与粒子束, 2012, 24(6):1497-1501 doi: 10.3788/HPLPB20122406.1497Wei Bing, Fang Dongfan, Qing Yanling, et al. D-dot monitor for sub-nanosecond high voltage pulse measurement[J]. High Power Laser and Particle Beams, 2012, 24(6): 1497-1501 doi: 10.3788/HPLPB20122406.1497 [8] 王亮平, 郭宁, 李岩, 等. 测量强光一号负载电压的电容分压器[J]. 强激光与粒子束, 2010, 22(3):696-700 doi: 10.3788/HPLPB20102203.0696Wang Liangping, Guo Ning, Li Yan, et al. Capacitive divider for voltage measurement of diode load on Qiangguang-I accelerator[J]. High Power Laser and Particle Beams, 2010, 22(3): 696-700 doi: 10.3788/HPLPB20102203.0696 [9] 张璐, 齐卫东, 黄国强, 等. 标称3 MV快速暂态过电压测量用传感器研制[J]. 高电压技术, 2016, 42(6):1811-1818Zhang Lu, Qi Weidong, Huang Guoqiang, et al. Voltage sensor development for VFTO measurement with nominal voltage of 3 MV[J]. High Voltage Engineering, 2016, 42(6): 1811-1818 [10] 卫兵, 李勇, 康军军, 等. 测量微秒量级脉宽方波信号的电容分压器[J]. 强激光与粒子束, 2023, 35:025002 doi: 10.11884/HPLPB202335.220150Wei Bing, Li Yong, Kang Junjun, et al. Capacitive divider for measuring μs width square wave pulse[J]. High Power Laser and Particle Beams, 2023, 35: 025002 doi: 10.11884/HPLPB202335.220150 [11] 卫兵, 龚伯仪, 王治, 等. 自积分式电容分压器的频率响应特性[J]. 强激光与粒子束, 2018, 30:045006 doi: 10.11884/HPLPB201830.170369Wei Bing, Gong Boyi, Wang Zhi, et al. Frequency response characteristics of self-integralting capacitive divider[J]. High Power Laser and Particle Beams, 2018, 30: 045006 doi: 10.11884/HPLPB201830.170369 [12] Brady M M, Dedrick K G. High-voltage pulse measurement with a precision capacitive voltage divider[J]. Review of Scientific Instruments, 1962, 33(12): 1421-1428. doi: 10.1063/1.1717792 [13] Boggs S A, Fujimoto N. Techniques and instrumentation for measurement of transients in gas-insulated switchgear[J]. IEEE Transactions on Electrical Insulation, 1984, EI-19(2): 87-92. doi: 10.1109/TEI.1984.298778 [14] 刘金亮, 怀武龙, 钟辉煌. 脉冲高电压的频率对电容分压器性能的影响[J]. 国防科技大学学报, 2000, 22(S1):10-13 doi: 10.3969/j.issn.1001-2486.2000.z1.003Liu Jinliang, Huai Wulong, Zhong Huihuang. Effect of high voltage pulse’s frequency to performance of capacitive divider[J]. Journal of National University of Defense Technology, 2000, 22(S1): 10-13 doi: 10.3969/j.issn.1001-2486.2000.z1.003 [15] 陈昌渔, 王昌长, 高胜友. 高电压试验技术[M]. 4版. 北京: 清华大学出版社, 2017: 153-154Chen Changyu, Wang Changchang, Gao Shengyou. High-voltage testing technology[M]. 4th ed. Beijing: Tsinghua University Press, 2017: 153-154 [16] 贺元吉. 一种测量亚ns级脉冲高电压的电容分压器[J]. 哈尔滨理工大学学报, 2004, 9(3):41-43 doi: 10.3969/j.issn.1007-2683.2004.03.013He Yuanji. Sub-nanosecond capacitive voltage divider for high-voltage pulse measurement[J]. Journal of Harbin University of Science and Technology, 2004, 9(3): 41-43 doi: 10.3969/j.issn.1007-2683.2004.03.013 [17] 邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016: 296-297Qiu Aici. Pulse power technology application[M]. Xi’an: Shaanxi Science and Technology Press, 2016: 296-297 [18] 施围, 邱毓昌, 张乔根. 高电压工程基础[M]. 北京: 机械工业出版社, 2006: 30Shi Wei, Qiu Yuchang, Zhang Qiaogen. High voltage engineering foundation[M]. Beijing: China Machine Press, 2006: 30 [19] Yu Minghao, Takahashi Y, Kihara H, et al. Thermochemical nonequilibrium 2D modeling of nitrogen inductively coupled plasma flow[J]. Plasma Science and Technology, 2015, 17(9): 749-760. doi: 10.1088/1009-0630/17/9/06