Optimization desigh of new all-solid-state modular multilevel special high-voltage power supply
-
摘要: 模块化多电平换流器(MMC)已成为新型全固态特种高压电源的有效解决方案,对其进行轻量化设计以节约设备空间成本成为当前研究热点。MMC中限制功率密度提升的首要因素为子模块大尺寸电容,为降低MMC对子模块容值的需求,提高系统功率密度,提出一种改进型MMC(I-MMC)拓扑。应用隔离型开关电容变换器,实现上下桥臂一对子模块高频链互联。研究中相单元内上、下桥臂子模块对并联的高频链两侧采用同步控制,使子模块电容之间呈现开关电容特性,实现波动功率在电容之间的自由传递,进而消除相位相反的基频与3倍频波动分量。结合MMC运行调制比和功率因数分析基频与3倍频波动分量消除后子模块电容取值,完成模块化设计。所提方案可将子模块电容减小至常规MMC的1/4。仿真与实验结果验证了所提拓扑方案的正确性与有效性。Abstract: Modular multilevel converter (MMC) has become an effective solution for new all-solid-state special high-voltage power supply, and its lightweight design to save equipment space cost has become a research hotspot. The primary factor limiting power density in MMC is the large size capacitance of submodule (SM), and to reduce the demand for the capacitance of the sub-module in modular multilevel converter, and increase system power density, an improved MMC(I-MMC) topology is proposed. Using isolated switched capacitor converters, a pair of SMs of the upper and lower arms are interconnected through a high frequency link. In the research, synchronous control was adopted on both sides of the high-frequency chain connecting the pair of SMs in the phase unit to make the SM capacitors present the characteristics of switched capacitors, realize free transfer of fluctuating power between the capacitors, and eliminate the fluctuation components of the oppostite phased fundamental frequency and triple frequency. Combining MMC operation modulation ratio and power factor, we analyzed the value of the SM capacitor after the fundamental frequency and triple frequency fluctuation components had been eliminated, and completed the modular design. This solution can reduce the sub-module capacitance to 1/4 of the conventional MMC's capacitance. Simulation and experimental results verify the correctness and the validity of the proposed topology scheme.
-
表 1 仿真参数
Table 1. Simulation parameters
model Udc/kV Uac/kV P/MW f/Hz fc/kHz number of
bridge arm submodulesLarm/mH C/μF transformer
conversion ratioL/μH fH/kHz MMC 12 12 1.2 50 2 4 10 668 − − − I-MMC 4.9 4.9 1.2 50 2 4 10 668/177 1∶1 9 20 表 2 实验参数
Table 2. Experimental parameters
Udc/V Uac/V P/kW f/Hz fc/kHz Larm/mH C/μF transformer conversion ratio L/μH fH/kHz 240 240 1.2 50 2 6 110 1:1 4.3 20 -
[1] 姜松, 邱力文, 饶俊峰, 等. 新型全固态高压多电平波形发生器的研制[J]. 强激光与粒子束, 2019, 31:115003 doi: 10.11884/HPLPB201931.190124Jiang Song, Qiu Liwen, Rao Junfeng, et al. Development of a new all-solid-state high voltage multilevel waveform generator[J]. High Power Laser and Particle Beams, 2019, 31: 115003 doi: 10.11884/HPLPB201931.190124 [2] 汤广福, 罗湘, 魏晓光. 多端直流输电与直流电网技术[J]. 中国电机工程学报, 2013, 33(10):8-17Tang Guangfu, Luo Xiang, Wei Xiaoguang. Multi-terminal HVDC and DC-grid technology[J]. Proceedings of the CSEE, 2013, 33(10): 8-17 [3] 徐旭哲, 周杨, 孙鹞鸿. 磁隔离触发式10 kV级联型脉冲电源研制[J]. 强激光与粒子束, 2016, 28:075001 doi: 10.11884/HPLPB201628.075001Xu Xuzhe, Zhou Yang, Sun Yaohong. Development of 10 kV cascaded pulse power supply based on magnetic isolation trigger[J]. High Power Laser and Particle Beams, 2016, 28: 075001 doi: 10.11884/HPLPB201628.075001 [4] 滕甲训, 赵巍, 潘禹卓, 等. 基于开关电容结构的MMC子模块波动功率耦合方案及其参数约束[J]. 中国电机工程学报, 2021, 41(21):7449-7463Teng Jiaxun, Zhao Wei, Pan Yuzhuo, et al. A fluctuating power coupling method for submodules of MMC based on switched-capacitors and its parameters constraint[J]. Proceedings of the CSEE, 2021, 41(21): 7449-7463 [5] 滕甲训, 潘禹卓, 卜泽敏, 等. 基于谐振式推挽结构的三端口MMC-SST波动功率耦合方案研究[J]. 中国电机工程学报, 2022, 42(6):2308-2320Teng Jiaxun, Pan Yuzhuo, Bu Zemin, et al. Research on fluctuating power coupling scheme of three-port MMC-SST based on resonant push-pull structure[J]. Proceedings of the CSEE, 2022, 42(6): 2308-2320 [6] Debnath S, Qin Jiangchao, Saeedifard M. Control and stability analysis of modular multilevel converter under low-frequency operation[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5329-5339. doi: 10.1109/TIE.2015.2414908 [7] 董鹏, 蔡旭, 吕敬. 大幅减小子模块电容容值的MMC优化方法[J]. 中国电机工程学报, 2018, 38(18):5369-5380Dong Peng, Cai Xu, Lü Jing. Optimized method of MMC for greatly reducing the capacitance of the submodules[J]. Proceedings of the CSEE, 2018, 38(18): 5369-5380 [8] 李笑倩, 刘文华, 孙树敏, 等. 利用环流的MMC电容电压波动抑制方法[J]. 电力电子技术, 2018, 52(11):30-32,74Li Xiaoqian, Liu Wenhua, Sun Shumin, et al. Capacitor voltage ripple suppression method of MMC using circulating current[J]. Power Electronics, 2018, 52(11): 30-32,74 [9] 黄守道, 彭也伦, 廖武. 模块化多电平型变流器电容电压波动及其抑制策略研究[J]. 电工技术学报, 2015, 30(7):62-71Huang Shoudao, Peng Yelun, Liao Wu. Study of capacitor voltage fluctuation and its suppression for modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2015, 30(7): 62-71 [10] Du Sixing, Wu Bin, Zargari N R, et al. A flying-capacitor modular multilevel converter for medium-voltage motor drive[J]. IEEE Transactions on Power Electronics, 2017, 32(3): 2081-2089. doi: 10.1109/TPEL.2016.2565510 [11] Li Binbin, Zhou Shaoze, Xu Dianguo, et al. A hybrid modular multilevel converter for medium-voltage variable-speed motor drives[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4619-4630. doi: 10.1109/TPEL.2016.2598286 [12] 李国庆, 王威儒, 辛业春, 等. 模块化多电平换流器子模块分组排序调制策略[J]. 高电压技术, 2018, 44(7):2107-2114Li Guoqing, Wang Weiru, Xin Yechun, et al. Sub-module grouping modulation strategy of modular multilevel converter[J]. High Voltage Engineering, 2018, 44(7): 2107-2114 [13] Tu Chunming, Xiao Fan, Lan Zheng, et al. Analysis and control of a novel modular-based energy router for DC microgrid cluster[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(1): 331-342. doi: 10.1109/JESTPE.2018.2878004 [14] 班明飞, 申科, 王建赜, 等. 基于准比例谐振控制的MMC新型环流抑制器[J]. 电力系统自动化, 2014, 38(11):85-89,129Ban Mingfei, Shen Ke, Wang Jianze, et al. A novel circulating current suppressor for modular multilevel converters based on quasi-proportional-resonant control[J]. Automation of Electric Power Systems, 2014, 38(11): 85-89,129 [15] 徐政, 屠卿瑞, 管敏渊, 等. 柔性直流输电系统[M]. 北京: 机械工业出版社, 2012Xu Zheng, Tu Qingrui, Guan Minyuan, et al. Flexible DC transmission system[M]. Beijing: China Machine Press, 2012