留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于级间自触发Marx电路的高压阻尼振荡发生器

陈玉峰 王庆峰 李相强 张健穹

陈玉峰, 王庆峰, 李相强, 等. 基于级间自触发Marx电路的高压阻尼振荡发生器[J]. 强激光与粒子束, 2024, 36: 055003. doi: 10.11884/HPLPB202436.230360
引用本文: 陈玉峰, 王庆峰, 李相强, 等. 基于级间自触发Marx电路的高压阻尼振荡发生器[J]. 强激光与粒子束, 2024, 36: 055003. doi: 10.11884/HPLPB202436.230360
Chen Yufeng, Wang Qingfeng, Li Xiangqiang, et al. High voltage damped oscillator based on interstage self-triggering Marx circuit[J]. High Power Laser and Particle Beams, 2024, 36: 055003. doi: 10.11884/HPLPB202436.230360
Citation: Chen Yufeng, Wang Qingfeng, Li Xiangqiang, et al. High voltage damped oscillator based on interstage self-triggering Marx circuit[J]. High Power Laser and Particle Beams, 2024, 36: 055003. doi: 10.11884/HPLPB202436.230360

基于级间自触发Marx电路的高压阻尼振荡发生器

doi: 10.11884/HPLPB202436.230360
基金项目: 四川省科技计划资助(2023NSFSC0463)
详细信息
    作者简介:

    陈玉峰,13086637313@163.com

    通讯作者:

    王庆峰,wangqingfeng173@163.com

  • 中图分类号: TN386

High voltage damped oscillator based on interstage self-triggering Marx circuit

  • 摘要: 为了增大输出电压的同时减小高压阻尼振荡发生器的体积和降低其成本,建立了一种4×4级间自触发Marx结构的阻尼振荡发生器模型。该模型每级的主开关采用基于电容触发方式的串联IGBT模块,只需提供一路隔离信号控制一级放电开关管的导通和关断,通过级间电容实现对相邻级放电管的栅极自动充电和放电,使其导通和关断。该模型提高了Marx单级的工作电压和简化了每级的驱动电路,并且通过加入缓冲电路,解决开关管动态、静态均压问题。基于这种拓扑结构搭建了一台高压阻尼振荡发生器样机,在电感负载上输出16 kV、振荡频率1 MHz的阻尼振荡波形,波形上升时间约为75 ns,重复频率500 Hz。样机体积小巧、工作稳定,验证了该方案的可行性。
  • 图  1  基于级间自触发Marx电路的阻尼振荡发生器电路图

    Figure  1.  Circuit diagram of damped oscillation generator based on interstage self-triggering Marx circuit

    图  2  自触发Marx电路结构的阻尼振荡发生器充电回路

    Figure  2.  Charging circuit of damped oscillator with self-triggering Marx circuit structure

    图  3  自触发Marx电路结构的阻尼振荡发生器导通回路

    Figure  3.  Turn-on process of damped oscillator with self-triggering Marx circuit structure

    图  4  自触发Marx电路结构的阻尼振荡发生器关断回路

    Figure  4.  Turn-off process of damped oscillator with self-triggering Marx circuit structure

    图  5  阻尼振荡发生器等效模型

    Figure  5.  Equivalent model of damped oscillation generator

    图  6  基于级间自触发Marx电路的阻尼振荡发生器仿真波形图

    Figure  6.  Simulation waveforms of damped oscillator based on interstage self-triggering Marx circuit

    图  7  未加缓冲电路时单级Marx中串联IGBT输出电压波形图

    Figure  7.  Voltage waveforms of Q1~Q4 before voltage equalization

    图  8  加入缓冲电路后单级Marx中串联IGBT输出电压波形图

    Figure  8.  Voltage waveforms of Q1~Q4 after voltage equalization

    图  9  4$ \times $4的级间自触发Marx电路阻尼振荡发生器模块测试结果

    Figure  9.  Test results of the 4×4 interstage self-triggering Marx circuit damped oscillator module

    图  10  不同工作电压下驱动电压波形图

    Figure  10.  Driving voltage waveforms under different operating voltages

    表  1  电路参数

    Table  1.   Circuit parameters

    input DC
    voltage/V
    signal
    width/μs
    storage capacitance
    of Cp/nF
    gate parallel
    resisitance Rs/kΩ
    isolation
    inductance Ls/μH
    equalizing
    resistance Rd/kΩ
    buffer capacitance
    Cd/μF
    resistance
    of load/Ω
    inductance
    of load/μH
    4200 100 1.5 10 100 100 0.1 20 60
    下载: 导出CSV
  • [1] 陈连明. 基于阻尼振荡电压的直流电缆典型缺陷局部放电检测[D]. 北京: 华北电力大学, 2021: 4-10

    Chen Lianming. Partial discharge detection of typical defects for DC cables based on damped AC voltage[D]. Beijing: North China Electric Power University, 2021: 4-10
    [2] Takahashi T, Takahashi T, Okamoto T. Insulation diagnosis for XLPE cables using damping oscillating high voltage[C]//2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. 2008: 471-474.
    [3] GB/T 17626.18-2016, 电磁兼容 试验和测量技术 阻尼振荡波抗扰度试验[S]

    GB/T 17626.18-2016, Electromagnetic compatibility—Testing and measurement techniques—Damped oscillatory wave immunity test[S]
    [4] 陆征军, 李超群, 李燕, 等. 就地安装的智能电子设备的电磁兼容问题[J]. 高压电器, 2013, 49(7):92-95

    Lu Zhengjun, Li Chaoqun, Li Yan, et al. EMC issues of IEDs installed locally[J]. High Voltage Electrical Apparatus, 2013, 49(7): 92-95
    [5] 李祥超, 周中山, 陈璞阳, 等. 雷电阻尼振荡波发生器的设计方法[J]. 电瓷避雷器, 2015(2):99-104

    Li Xiangchao, Zhou Zhongshan, Chen Puyang, et al. Design method of lightning damped oscillatory wave generator[J]. Insulators and Surge Arresters, 2015(2): 99-104
    [6] 嵇建飞, 袁宇波, 庞福滨. 智能变电站就地智能设备电磁兼容抗扰度实验分析[J]. 电工技术学报, 2014, 29(S1):454-462

    Ji Jianfei, Yuan Yubo, Pang Fubin. Experimental analysis of EMC immunity for field installed intelligent equipment of intelligent substation[J]. Transactions of China Electrotechnical Society, 2014, 29(S1): 454-462
    [7] 李振华, 胡蔚中, 闫苏红, 等. 隔离开关开合下电子式互感器传导干扰分析及抗干扰方法[J]. 高电压技术, 2016, 42(1):233-240

    Li Zhenhua, Hu Weizhong, Yan Suhong, et al. Conductive interference analysis and anti-interference methods of electronic transformers in disconnector switching test[J]. High Voltage Engineering, 2016, 42(1): 233-240
    [8] 胡逸帆. 配电开关柜开关操作对二次设备电磁骚扰的研究[D]. 北京: 华北电力大学, 2019: 21-27

    Hu Yifan. Study of the electromagnetic disturbance caused by the switching operation of the distribution switchgear on the secondary equipment(s)[D]. Beijing: North China Electric Power University, 2019: 21-27
    [9] 张志华, 宋光达, 甄建辉, 等. 配电网一二次融合开关传导电磁干扰试验方法研究[J]. 高压电器, 2021, 57(8):69-77

    Zhang Zhihua, Song Guangda, Zhen Jianhui, et al. Study on conduction electromagnetic interference test method for primary and secondary fusion switch in distribution network[J]. High Voltage Apparatus, 2021, 57(8): 69-77
    [10] Kando M. A high voltage damped oscillating wave generator[C]//2004 IEEE Region 10 Conference TENCON 2004. 2004: 124-127.
    [11] Liang Jianfeng, Zhang Liang, Li Junhao, et al. Study on oscillating switching impulse voltage generation for power transformer onsite test[J]. IEEE Transactions on Power Delivery, 2014, 29(5): 2223-2230. doi: 10.1109/TPWRD.2014.2308542
    [12] 陈鹏, 陶智. 间接雷电效应测试用快速衰减振荡波发生器研制[J]. 高电压技术, 2017, 43(5):1425-1431

    Chen Peng, Tao Zhi. Development of fast damped oscillatory wave generators for indirect lighting effects test[J]. High Voltage Engineering, 2017, 43(5): 1425-1431
    [13] 李婧, 黄晨曦, 郭金明, 等. 30kV阻尼交流振荡波测试系统用新型电力电子开关的研制[J]. 电气技术, 2015(12):42-46

    Li Jing, Huang Chenxi, Guo Jinming, et al. Development of a novel 30kV semiconductor switch for damped oscillating voltage testing system[J]. Electrical Engineering, 2015(12): 42-46
    [14] Zeng Weirong, Yao Chenguo, Dong Shoulong, et al. Self-triggering high-frequency nanosecond pulse generator[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8002-8012. doi: 10.1109/TPEL.2020.2967183
    [15] Pang Lei, Long Tianjun, He Kun, et al. A compact series-connected SiC MOSFETs module and its application in high voltage nanosecond pulse generator[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9238-9247. doi: 10.1109/TIE.2019.2891441
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  44
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-19
  • 修回日期:  2023-11-27
  • 录用日期:  2023-12-11
  • 网络出版日期:  2024-01-24
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回