留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于斜孔散射校正板的锥束X射线CT散射校正方法

郭成龙 倪培君 齐子诚 付康

郭成龙, 倪培君, 齐子诚, 等. 基于斜孔散射校正板的锥束X射线CT散射校正方法[J]. 强激光与粒子束, 2024, 36: 074004. doi: 10.11884/HPLPB202436.230362
引用本文: 郭成龙, 倪培君, 齐子诚, 等. 基于斜孔散射校正板的锥束X射线CT散射校正方法[J]. 强激光与粒子束, 2024, 36: 074004. doi: 10.11884/HPLPB202436.230362
Guo Chenglong, Ni Peijun, Qi Zicheng, et al. Scattering correction method for cone-beam X-ray CT based on slanted-hole scattering correction plate[J]. High Power Laser and Particle Beams, 2024, 36: 074004. doi: 10.11884/HPLPB202436.230362
Citation: Guo Chenglong, Ni Peijun, Qi Zicheng, et al. Scattering correction method for cone-beam X-ray CT based on slanted-hole scattering correction plate[J]. High Power Laser and Particle Beams, 2024, 36: 074004. doi: 10.11884/HPLPB202436.230362

基于斜孔散射校正板的锥束X射线CT散射校正方法

doi: 10.11884/HPLPB202436.230362
基金项目: 国家重点研发计划项目(2022YFB602500);国家高技术发展计划项目
详细信息
    作者简介:

    郭成龙,1065337899@qq.com

    通讯作者:

    倪培君,nipeijun@vip.sina.com

  • 中图分类号: TP391.41

Scattering correction method for cone-beam X-ray CT based on slanted-hole scattering correction plate

  • 摘要: 锥束X射线CT和二维扇束、平行束CT系统相比具有扫描速度快、射线利用率高、重建图像轴向分辨率和水平分辨率一致等优点,是当前工业CT技术发展的重点。然而,由于散射线的存在,其成像质量受到影响。为了减小散射线对图像质量的影响,提出一种新的基于斜孔散射校正板的散射校正方法,对该方法的原理和实现进行了深入的研究,通过获取原始扫描数据以及斜孔散射校正板后的扫描数据,利用插值和平滑处理的方法获得散射场数据。然后,通过将原始数据减去散射场数据后进行重建,即可得到无散射的CT图像。通过与光栅式散射校正板校正方法进行对比,结果表明,该方法应用于涡轮叶片的锥束CT扫描结果校正,典型区域(叶片内冷却通道及叶片内壁)对比度噪声比分别提升了14.2%和56.8%,而光栅式散射校正板校正后,同一位置对比度噪声比分别仅提升了5.6%和27.6%,验证了基于斜孔散射校正板散射校正方法的优越性。
  • 图  1  针对锥束CT的成像系统几何图形的说明

    Figure  1.  Illustration of imaging system geometry for cone-beam X-ray (CBCT) CT

    图  2  散射校正步骤示意图

    Figure  2.  Scatter correction procedure diagram

    图  3  校正板投影信息

    Figure  3.  Projection information of the correction plate

    图  4  插值过程示意图

    Figure  4.  Interpolation process schematic diagram

    图  5  图像处理流程图

    Figure  5.  Flow chart of image processing

    图  6  CT系统外观

    Figure  6.  Appearance of the CT

    图  7  CT散射估计

    Figure  7.  CT scattering estimation

    图  8  沿A1A2的灰度值图像

    Figure  8.  Gray value images along A1 and A2

    图  9  沿A2方向两幅DR图像校正前后的灰度值图像

    Figure  9.  Grayscale images of two DR images along A2 direction

    图  10  重建后图像

    Figure  10.  Reconstructed images

    图  11  校正前后切片图

    Figure  11.  Tomographic images before and after correction

    表  1  校正板几何参数

    Table  1.   Correction plate geometry parameters

    width of calibration
    plate/mm
    calibration plate
    height/mm
    calibration plate
    thickness/mm
    hole
    diameter/mm
    vertical hole
    spacing/mm
    horizontal hole
    spacing/mm
    400 400 20 4 9.2 5.3
    下载: 导出CSV

    表  2  扫描参数

    Table  2.   Scanning parameters

    scanning voltage/kV scanning current/μA focus size/mm image size/(pixel×pixel) FOD/mm FDD/mm
    260 180 0.4 2000×2000 149 807
    下载: 导出CSV

    表  3  校正前后切片图像对比度噪声比

    Table  3.   RCN of tomographic images before and after correction

    correction method origin RCN RCN improvement ratio/%
    area a area b area a area b
    pre-correction 30.3 7 / /
    after slanted-hole correction 35.3 16.2 14.2 56.8
    after raster correction 32.1 9.7 5.6 27.6
    下载: 导出CSV
  • [1] 李新越, 杨龙, 孙春贵, 等. 基于微焦点工业CT的高压涡轮叶片缺陷检测技术[J]. 铸造, 2023, 72(7):904-908

    Li Xinyue, Yang Long, Sun Chungui, et al. High-pressure turbine blade defect detection technology based on micro-focus industrial CT[J]. Foundry, 2023, 72(7): 904-908
    [2] 杨光, 高嘉保, 韩瑞. 基于深度学习建立模型去除工业CT伪影的技术研究[J]. 无损探伤, 2023, 47(3):18-22

    Yang Guang, Gao Jiabao, Han Rui. Research on the technology of removing artifacts in industrial CT based on deep learning modeling[J]. Nondestructive Testing Technology, 2023, 47(3): 18-22
    [3] 阳庆国, 谭伯仲. 高性能锥束工业X射线CT系统研制与应用[J]. 光学 精密工程, 2023, 31(6):804-812 doi: 10.37188/OPE.20233106.0804

    Yang Qingguo, Tan Bozhong. Development and application of high-performance cone-beam industrial X-ray CT system[J]. Optical and Precision Engineering, 2023, 31(6): 804-812 doi: 10.37188/OPE.20233106.0804
    [4] 齐子诚, 倪培君, 姜伟, 等. 金属材料内部缺陷精确工业CT测量方法[J]. 强激光与粒子束, 2018, 30:025102 doi: 10.11884/HPLPB201830.170304

    Qi Zicheng, Ni Peijun, Jiang Wei, et al. CT method for accurately sizing flaws in metallic material[J]. High Power Laser and Particle Beams, 2018, 30: 025102 doi: 10.11884/HPLPB201830.170304
    [5] 唐杰, 张丽, 高文焕. 基于平板探测器的锥束CT系统综述[J]. 中国体视学与图像分析, 2004, 9(2):65-70 doi: 10.3969/j.issn.1007-1482.2004.02.001

    Tang Jie, Zhang Li, Gao Wenhuan. Review of cone-beam CT systems based on flat panel detector[J]. Chinese Journal of Stereology and Image Analysis, 2004, 9(2): 65-70 doi: 10.3969/j.issn.1007-1482.2004.02.001
    [6] Huang Kuidong, Zhang Hua, Shi Yikai, et al. Scatter correction method for cone-beam CT based on interlacing-slit scan[J]. Chinese Physics B, 2014, 23: 098106. doi: 10.1088/1674-1056/23/9/098106
    [7] Halmshaw R. Industrial radiology: theory and practice[M]. Dordrecht: Springer, 1995.
    [8] 李双镭, 张丽, 陈志强, 等. 450keV锥束CT系统的散射校正研究[J]. 核电子学与探测技术, 2006, 26(6):908-911 doi: 10.3969/j.issn.0258-0934.2006.06.059

    Li Shuanglei, Zhang Li, Chen Zhiqiang, et al. X-ray scatter correction algorithm for 450keV cone-beam CT system[J]. Nuclear Electronics & Detection Technology, 2006, 26(6): 908-911 doi: 10.3969/j.issn.0258-0934.2006.06.059
    [9] Cai Weixing, Ning Ruola, Conover D. Scatter correction using beam stop array algorithm for cone-beam CT breast imaging[C]//Proceedings of SPIE 6142, Medical Imaging 2006: Physics of Medical Imaging. 2006: 1157-1165.
    [10] Liu Wenlei, Rong Junyan, Gao Peng, et al. Algorithm for X-ray beam hardening and scatter correction in low-dose cone-beam CT: phantom studies[C]//Proceedings of SPIE 9783, Medical Imaging 2016: Physics of Medical Imaging. 2016: 785-792.
    [11] 邵义文, 卢文婷, 周凌宏. 锥形束CT系统的散射校正方法分析[J]. 中国医学物理学杂志, 2008, 25(3):634-637

    Shao Yiwen, Lu Wenting, Zhou Linghong. Review of the methods for X-ray scatter correction in cone-beam CT system[J]. Chinese Journal of Medical Physics, 2008, 25(3): 634-637
    [12] Sisniega A, Zbijewski W, Xu J, et al. High-fidelity artifact correction for cone-beam CT imaging of the brain[J]. Physics in Medicine & Biology, 2015, 60(4): 1415-1439.
    [13] Iskender B, Bresler Y. Scatter correction in X-ray CT by physics-inspired deep learning[J]. IEEE Transactions on Computational Imaging, 2022, 8: 1074-1088. doi: 10.1109/TCI.2022.3226300
    [14] Lalonde A, Winey B, Verburg J, et al. Evaluation of CBCT scatter correction using deep convolutional neural networks for head and neck adaptive proton therapy[J]. Physics in Medicine & Biology, 2020, 65: 245022.
    [15] Naimuddin S, Hasegawa B, Mistretta C A. Scatter-glare correction using a convolution algorithm with variable weighting[J]. Medical Physics, 1987, 14(3): 330-334. doi: 10.1118/1.596088
    [16] Ning Ruola, Tang Xiangyang, Conover D. X-ray scatter correction algorithm for cone-beam CT imaging[J]. Medical Physics, 2004, 31(5): 1195-1202. doi: 10.1118/1.1711475
    [17] 邹伟, 朱国平, 凌云龙, 等. 集装箱CT检查系统二维防散射滤线栅作用分析[J]. 强激光与粒子束, 2023, 35:086001 doi: 10.11884/HPLPB202335.220421

    Zou Wei, Zhu Guoping, Ling Yunlong, et al. A simulation study of two-dimensional anti-scatter grid in container CT inspection systems[J]. High Power Laser and Particle Beams, 2023, 35: 086001 doi: 10.11884/HPLPB202335.220421
    [18] 杨富强. 基于知识的涡轮叶片高质量锥束CT成像技术研究[D]. 西安: 西北工业大学, 2018

    Yang Fuqiang. High quality imaging research on turbine blades for knowledge-based cone beam CT[D]. Xi’an: Northwestern Polytechnical University, 2018
    [19] Kaufmann M, Pfaffelhuber C, Vater I, et al. Quantitative assessment of a beam hole scatter correction in industrial computed tomography[J]. tm - Technisches Messen, 2022, 89(9): 625-633. doi: 10.1515/teme-2022-0018
    [20] Zhu Yubin, Dai Yonghang, Han Kaining, et al. An efficient bicubic interpolation implementation for real-time image processing using hybrid computing[J]. Journal of Real-Time Image Processing, 2022, 19(6): 1211-1223. doi: 10.1007/s11554-022-01254-8
    [21] 秦彦平, 张军, 多化琼, 等. 木材节子图像增强的小波变换与双三次插值融合方法[J]. 西北林学院学报, 2021, 36(5):183-189

    Qin Yanping, Zhang Jun, Duo H Q, et al. Fusion method of wavelet transform and bicubic interpolation for wood knot image enhancement[J]. Journal of Northwest Forestry University, 2021, 36(5): 183-189
    [22] 唐天旭, 段晓礁, 周志政, 等. 基于散射校正板的锥束微纳CT系统的散射校正[J]. 光学学报, 2019, 39:0834001 doi: 10.3788/AOS201939.0834001

    Tang Tianxu, Duan Xiaojiao, Zhou Zhizheng, et al. Scatter correction based on beam stop array for cone-beam micro-computed tomography[J]. Acta Optica Sinica, 2019, 39: 0834001 doi: 10.3788/AOS201939.0834001
    [23] 胡栋材, 陈浩, 张定华. 基于平板探测器的锥束CT散射校正方法[J]. CT理论与应用研究, 2009, 18(1):16-22

    Hu Dongcai, Chen Hao, Zhang Dinghua. Scatter correction method for flat-panel detector-based cone beam CT[J]. CT Theory and Applications, 2009, 18(1): 16-22
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  120
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-20
  • 修回日期:  2024-04-12
  • 录用日期:  2024-04-02
  • 网络出版日期:  2024-04-28
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回