留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种用于波导中传动轴的级联宽带扼流装置

董涛 王秀芳 倪泰来 王皓 王邦继 刘庆想

董涛, 王秀芳, 倪泰来, 等. 一种用于波导中传动轴的级联宽带扼流装置[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230401
引用本文: 董涛, 王秀芳, 倪泰来, 等. 一种用于波导中传动轴的级联宽带扼流装置[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230401
Dong Tao, Wang Xiufang, Ni Tailai, et al. A cascaded broadband choke device for the transmission shaft in the waveguide[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230401
Citation: Dong Tao, Wang Xiufang, Ni Tailai, et al. A cascaded broadband choke device for the transmission shaft in the waveguide[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230401

一种用于波导中传动轴的级联宽带扼流装置

doi: 10.11884/HPLPB202436.230401
基金项目: 中央高校基本科研业务费专项(2682024GF013)
详细信息
    作者简介:

    董 涛,dongtao@my.swjtu.edu.cn

    通讯作者:

    王秀芳,xwang66880@163.com

  • 中图分类号: TN628

A cascaded broadband choke device for the transmission shaft in the waveguide

  • 摘要: 为了抑制波导中引入传动轴导致的微波泄露,保障系统的正常运行,提出了一种级联宽带扼流装置。利用阻抗变换原理分析了级联宽带扼流装置的带宽特性,通过增加介质片的数量提升扼流装置的频带宽度。根据等效波长原理,提高介质片介电常数可缩小扼流装置的体积。通过电磁仿真软件构建扼流装置模型,并分析了介质片数量、介电常数和尺寸对扼流装置性能的影响。仿真结果表明:工作频率为10 GHz时,双层扼流装置的泄露损耗在9.70~10.82 GHz带宽范围内小于−40 dB,相对带宽达到8.2%。最后,采用简化仿真模型进行了实物加工和测试,测试结果证实仿真结果的正确性,同时验证了该扼流装置的低损耗和宽频带特性。
  • 图  1  结构剖面示意图

    Figure  1.  Structural profile of the choke device

    图  2  等效电路图

    Figure  2.  Equivalent circuit diagram

    图  3  仿真模型结构剖面图

    Figure  3.  Structural profile of the simulation model

    图  4  n变化时扼流装置的泄露损耗

    Figure  4.  Leakage loss of the choke device when n changes

    图  5  介电常数${\varepsilon _r}$变化时的泄露损耗

    Figure  5.  Leakage loss of the choke device when ${\varepsilon _r}$ changes

    图  6  12.5 GHz时的泄露损耗

    Figure  6.  Leakage loss of the choke device working at 12.5 GHz

    图  7  双频点扼流装置的泄露损耗

    Figure  7.  Leakage loss of the choke device with two frequencies

    图  8  介质片厚度h1变化时的泄露损耗

    Figure  8.  Leakage loss of the choke device when h1 changes

    图  9  三端口结构剖面图

    Figure  9.  Structural profile of the simulation model with 3 端口s

    图  10  四端口与三端口的泄露损耗

    Figure  10.  Leakage loss of 4 端口s and 3 端口s

    图  11  实物及测试过程

    Figure  11.  Pictures of the objects and the testing process

    图  12  传输系数(S21)与泄露损耗(S31

    Figure  12.  Transmission coefficient (S21) and leakage loss (S31)

    表  1  介电常数不同时介质片的结构参数表

    Table  1.   Structural parameters of choke device with different permittivity Unit: mm

    ${\varepsilon _r}$ ${d_1}$ ${d_2}$ ${d_3}$ ${h_1}$ ${h_2}$ ${h_3}$
    4.0 3.00 3.80 13.30 1.50 0.50 1.50
    9.0 3.00 3.80 9.84 1.50 0.50 1.50
    12.0 3.00 3.80 8.95 1.50 0.50 1.50
    下载: 导出CSV

    表  2  扼流装置性能对比

    Table  2.   Comparison of choke device performance

    reference center frequency/ GHz relative bandwidth (leakage loss $ \leqslant $−40 dB) relative bandwidth (leakage loss $ \leqslant $−60 dB)
    in Ref.[15] 12.5 3.6% 0.4%
    this work 12.5 13.4% 4.3%
    this work 10.0 8.2% 2.5%
    下载: 导出CSV
  • [1] Pyne B, Naruse R, Saito H, et al. Robust contactless noncircular choke flange for wideband waveguide applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(3): 861-867. doi: 10.1109/TMTT.2018.2884885
    [2] 赵连敏, 贾华, 徐旵东, 等. EAST4.6GHz/4MW低杂波电流驱动系统隔直器优化设计[J]. 核电子学与探测技术, 2009, 29(6):1405-1408 doi: 10.3969/j.issn.0258-0934.2009.06.041

    Zhao Lianmin, Jia Hua, Xu Handong, et al. The design of direct current for EAST4.6GHz/4MW lower hybrid drive system[J]. Nuclear Electronics & Detection Technology, 2009, 29(6): 1405-1408 doi: 10.3969/j.issn.0258-0934.2009.06.041
    [3] 胡南. 具有射频扼流的波导: CN202111007639.9[P]. 2021-08-30

    Hu Nan. Waveguide with RF choke: CN202111007639.9[P]. 2021-08-30
    [4] 秋实, 焦永昌, 黄惠军, 等. 功率容量大于1 GW的组合式旋转关节[J]. 强激光与粒子束, 2010, 22(6):1415-1418 doi: 10.3788/HPLPB20102206.1415

    Qiu Shi, Jiao Yongchang, Huang Huijun, et al. Combined rotary joint with power capability over 1 GW[J]. High Power Laser and Particle Beams, 2010, 22(6): 1415-1418 doi: 10.3788/HPLPB20102206.1415
    [5] Azim M T, Park J, Park S O. Contactless linear rotary joint at Ku-band[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(6): 373-375. doi: 10.1109/LMWC.2019.2912271
    [6] Zhao Liang, Shi Jin, Xu Kai. Broadband coaxial rotary joint with simple substrate integrated waveguide feeder[J]. IEEE Access, 2019, 7: 139499-139503. doi: 10.1109/ACCESS.2019.2943367
    [7] 李瑜华, 景莉莉, 张明涛, 等. 大功率馈源类产品低PIM结构设计[J]. 太赫兹科学与电子信息学报, 2020, 18(4):633-638 doi: 10.11805/TKYDA2017235

    Li Yuhua, Jing Lili, Zhang Mingtao, et al. Low PIM structural design for high-power feed product[J]. Journal of Terahertz Science and Electronic Information Technology, 2020, 18(4): 633-638 doi: 10.11805/TKYDA2017235
    [8] 蔡鹏军. 通信卫星大功率射频组件无源互调的控制研究[D]. 成都: 电子科技大学, 2020

    Cai Pengjun. Research on passive intermodulation control of high power radio frequency modules of communication satellite[D]. Chengdu: University of Electronic Science and Technology of China, 2020
    [9] Sun Mengmeng, Qian Jingyi, Bai Xudong, et al. Compact hybrid choke rings for dual-band circularly polarized GPS antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1): 9-13. doi: 10.1109/LAWP.2022.3195204
    [10] Liu Sijia, Li Du, Li Boyu, et al. A compact high-precision GNSS antenna with a miniaturized choke ring[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2465-2468. doi: 10.1109/LAWP.2017.2724302
    [11] Davuluri A J, Polepalli S. A high gain Ku band antenna with circular polarization using hybrid choke ring structure[J]. IETE Journal of Research, 2023, 69(8): 5618-5627. doi: 10.1080/03772063.2021.1965041
    [12] Mansoori A, Isleifson D, Shafai L. Improving compact short backfire antenna gain and cross-polarization using choke and ring cavity loading[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5324-5334. doi: 10.1109/TAP.2022.3161463
    [13] Nakamoto N, Goto J, Suzuki Y, et al. Radial line helical phased array with antenna elements rotated by motors for microwave power transmissions[C]//Proceedings of the 2022 16th European Conference on Antennas and Propagation. 2022.
    [14] 张健穹, 刘庆想, 李相强, 等. 一种用于导波系统中传动轴的小型宽带扼流装置: CN200910252877.9[P]. 2009-11-30

    Zhang Jianqiong, Liu Qingxiang, Li Xiangqiang, et al. A small wideband choke device for a drive shaft in a wave guiding system: CN200910252877.9[P]. 2009-11-30
    [15] 李相强, 张健穹, 刘庆想, 等. 一种用于波导中传动轴的超小型扼流装置: CN201610355867.8[P]. 2016-05-25

    Li Xiangqiang, Zhang Jianqiong, Liu Qingxiang, et al. A subminiature choke device for a drive shaft in a waveguide: CN201610355867.8[P]. 2016-05-25
    [16] 刘庆. X/Ku波段多单元径向线阵列天线馈电系统设计[D]. 成都: 西南交通大学, 2016

    Liu Qing. Design on the feed system of X-band and Ku-band multi-unit radial line array antenna[D]. Chengdu: Southwest Jiaotong University, 2016
    [17] 胡济芳. 转动交连扼流槽的驻波与相移计算[J]. 现代雷达, 1999, 21(2):82-86 doi: 10.3969/j.issn.1004-7859.1999.02.016

    Hu Jifang. Calculation of VSWR and phase-shift for a choke slot of rotary joints[J]. Modern Radar, 1999, 21(2): 82-86 doi: 10.3969/j.issn.1004-7859.1999.02.016
    [18] 谢处方, 饶克谨, 杨显清, 等. 电磁场与电磁波[M]. 5版. 北京: 高等教育出版社, 2019

    Xie Chufang, Rao Kejin, Yang Xianqing, et al. Electromagnetic field and electromagnetic wave[M]. 5th ed. Beijing: Higher Education Press, 2019
    [19] Vaja C R, Rana V A. Design and fabrication of Open-ended Co-axial probe for complex permittivity measurement of liquids using CST Microwave Studio[J]. Materials Today: Proceedings, 2022, 67: 5-11. doi: 10.1016/j.matpr.2022.04.1002
  • 加载中
计量
  • 文章访问数:  25
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-14
  • 修回日期:  2024-04-24
  • 录用日期:  2023-12-21
  • 网络出版日期:  2024-04-30

目录

    /

    返回文章
    返回