A cascaded broadband choke device for the transmission shaft in the waveguide
-
摘要: 为了抑制波导中引入传动轴导致的微波泄露,保障系统的正常运行,提出了一种级联宽带扼流装置。利用阻抗变换原理分析了级联宽带扼流装置的带宽特性,通过增加介质片的数量提升扼流装置的频带宽度。根据等效波长原理,提高介质片介电常数可缩小扼流装置的体积。通过电磁仿真软件构建扼流装置模型,并分析了介质片数量、介电常数和尺寸对扼流装置性能的影响。仿真结果表明:工作频率为10 GHz时,双层扼流装置的泄露损耗在9.70~10.82 GHz带宽范围内小于−40 dB,相对带宽达到8.2%。最后,采用简化仿真模型进行了实物加工和测试,测试结果证实了仿真结果的正确性,同时验证了该扼流装置的低损耗和宽频带特性。Abstract: This paper presents a cascaded broadband choke device, which can prevent microwave leakage by a transmission shaft in the waveguide. Utilizing the principle of impedance transformation, the bandwidth attributes of the cascaded broadband choke device are examined. It is discerned that augmenting the quantity of dielectric slices can enhance the bandwidth of the choke device. Furthermore, based on the principle of equivalent wavelength, escalating the dielectric constant of the dielectric slice can effectively reduce the choke device’s volume. An electromagnetic simulation software is employed to establish a model of a double-layer choke structure. This model is then used to simulate and analyze the impact of variables such as the number of dielectric slices, dielectric constant, and size on the choke structure’s performance. The simulation outcomes indicate that at a working frequency of 10 GHz, the leakage loss of the double-layer choke structure is less than −40 dB within a bandwidth range of 9.70−10.82 GHz, achieving a relative bandwidth of 8.2%. A simplified simulation model is subsequently utilized for physical fabrication and testing. The experimental findings not only corroborate the accuracy of the simulation results but also affirm the low-loss and wide-bandwidth characteristics of the proposed choke structure.
-
Key words:
- choke device /
- broadband /
- cascade /
- transmission shaft /
- waveguide
-
表 1 介电常数不同时介质片的结构参数表
Table 1. Structural parameters of choke device with different permittivity
$ \varepsilon_{\mathrm{r}} $ ${d_1}$/mm ${d_2}$/mm ${d_3}$/mm ${h_1}$/mm ${h_2}$/mm ${h_3}$/mm 4.0 3.00 3.80 13.30 1.50 0.50 1.50 9.0 3.00 3.80 9.84 1.50 0.50 1.50 12.0 3.00 3.80 8.95 1.50 0.50 1.50 表 2 扼流装置性能对比
Table 2. Comparison of choke device performance
center
frequency/
GHzrelative bandwidth
(leakage loss
$ \leqslant $−40 dB)/%relative bandwidth
(leakage loss
$ \leqslant $−60 dB)/%Ref.[15] 12.5 3.6 0.4 this work 12.5 13.4 4.3 this work 10.0 8.2 2.5 -
[1] Pyne B, Naruse R, Saito H, et al. Robust contactless noncircular choke flange for wideband waveguide applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(3): 861-867. doi: 10.1109/TMTT.2018.2884885 [2] 赵连敏, 贾华, 徐旵东, 等. EAST4.6GHz/4MW低杂波电流驱动系统隔直器优化设计[J]. 核电子学与探测技术, 2009, 29(6):1405-1408 doi: 10.3969/j.issn.0258-0934.2009.06.041Zhao Lianmin, Jia Hua, Xu Handong, et al. The design of direct current for EAST4.6GHz/4MW lower hybrid drive system[J]. Nuclear Electronics & Detection Technology, 2009, 29(6): 1405-1408 doi: 10.3969/j.issn.0258-0934.2009.06.041 [3] 胡南. 具有射频扼流的波导: CN202111007639.9[P]. 2021-08-30Hu Nan. Waveguide with RF choke: CN202111007639.9[P]. 2021-08-30 [4] 秋实, 焦永昌, 黄惠军, 等. 功率容量大于1 GW的组合式旋转关节[J]. 强激光与粒子束, 2010, 22(6):1415-1418 doi: 10.3788/HPLPB20102206.1415Qiu Shi, Jiao Yongchang, Huang Huijun, et al. Combined rotary joint with power capability over 1 GW[J]. High Power Laser and Particle Beams, 2010, 22(6): 1415-1418 doi: 10.3788/HPLPB20102206.1415 [5] Azim M T, Park J, Park S O. Contactless linear rotary joint at Ku-band[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(6): 373-375. doi: 10.1109/LMWC.2019.2912271 [6] Zhao Liang, Shi Jin, Xu Kai. Broadband coaxial rotary joint with simple substrate integrated waveguide feeder[J]. IEEE Access, 2019, 7: 139499-139503. doi: 10.1109/ACCESS.2019.2943367 [7] 李瑜华, 景莉莉, 张明涛, 等. 大功率馈源类产品低PIM结构设计[J]. 太赫兹科学与电子信息学报, 2020, 18(4):633-638 doi: 10.11805/TKYDA2017235Li Yuhua, Jing Lili, Zhang Mingtao, et al. Low PIM structural design for high-power feed product[J]. Journal of Terahertz Science and Electronic Information Technology, 2020, 18(4): 633-638 doi: 10.11805/TKYDA2017235 [8] 蔡鹏军. 通信卫星大功率射频组件无源互调的控制研究[D]. 成都: 电子科技大学, 2020Cai Pengjun. Research on passive intermodulation control of high power radio frequency modules of communication satellite[D]. Chengdu: University of Electronic Science and Technology of China, 2020 [9] Sun Mengmeng, Qian Jingyi, Bai Xudong, et al. Compact hybrid choke rings for dual-band circularly polarized GPS antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1): 9-13. doi: 10.1109/LAWP.2022.3195204 [10] Liu Sijia, Li Du, Li Boyu, et al. A compact high-precision GNSS antenna with a miniaturized choke ring[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2465-2468. doi: 10.1109/LAWP.2017.2724302 [11] Davuluri A J, Polepalli S. A high gain Ku band antenna with circular polarization using hybrid choke ring structure[J]. IETE Journal of Research, 2023, 69(8): 5618-5627. doi: 10.1080/03772063.2021.1965041 [12] Mansoori A, Isleifson D, Shafai L. Improving compact short backfire antenna gain and cross-polarization using choke and ring cavity loading[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5324-5334. doi: 10.1109/TAP.2022.3161463 [13] Nakamoto N, Goto J, Suzuki Y, et al. Radial line helical phased array with antenna elements rotated by motors for microwave power transmissions[C]//Proceedings of the 2022 16th European Conference on Antennas and Propagation. 2022. [14] 张健穹, 刘庆想, 李相强, 等. 一种用于导波系统中传动轴的小型宽带扼流装置: CN200910252877.9[P]. 2009-11-30Zhang Jianqiong, Liu Qingxiang, Li Xiangqiang, et al. A small wideband choke device for a drive shaft in a wave guiding system: CN200910252877.9[P]. 2009-11-30 [15] 李相强, 张健穹, 刘庆想, 等. 一种用于波导中传动轴的超小型扼流装置: CN201610355867.8[P]. 2016-05-25Li Xiangqiang, Zhang Jianqiong, Liu Qingxiang, et al. A subminiature choke device for a drive shaft in a waveguide: CN201610355867.8[P]. 2016-05-25 [16] 刘庆. X/Ku波段多单元径向线阵列天线馈电系统设计[D]. 成都: 西南交通大学, 2016Liu Qing. Design on the feed system of X-band and Ku-band multi-unit radial line array antenna[D]. Chengdu: Southwest Jiaotong University, 2016 [17] 胡济芳. 转动交连扼流槽的驻波与相移计算[J]. 现代雷达, 1999, 21(2):82-86 doi: 10.3969/j.issn.1004-7859.1999.02.016Hu Jifang. Calculation of VSWR and phase-shift for a choke slot of rotary joints[J]. Modern Radar, 1999, 21(2): 82-86 doi: 10.3969/j.issn.1004-7859.1999.02.016 [18] 谢处方, 饶克谨, 杨显清, 等. 电磁场与电磁波[M]. 5版. 北京: 高等教育出版社, 2019Xie Chufang, Rao Kejin, Yang Xianqing, et al. Electromagnetic field and electromagnetic wave[M]. 5th ed. Beijing: Higher Education Press, 2019 [19] Vaja C R, Rana V A. Design and fabrication of Open-ended Co-axial probe for complex permittivity measurement of liquids using CST Microwave Studio[J]. Materials Today: Proceedings, 2022, 67: 5-11. doi: 10.1016/j.matpr.2022.04.1002 -