留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于211At生产的高功率金属Bi靶热效应模拟

熊杰 窦国梁 孙良亭 王洋 秦芝 任洁茹 赵永涛 赵红卫

熊杰, 窦国梁, 孙良亭, 等. 用于211At生产的高功率金属Bi靶热效应模拟[J]. 强激光与粒子束, 2024, 36: 094005. doi: 10.11884/HPLPB202436.230403
引用本文: 熊杰, 窦国梁, 孙良亭, 等. 用于211At生产的高功率金属Bi靶热效应模拟[J]. 强激光与粒子束, 2024, 36: 094005. doi: 10.11884/HPLPB202436.230403
Xiong Jie, Dou Guoliang, Sun Liangting, et al. Simulation of the thermal effect on high power Bi target for the large-scale 211At production[J]. High Power Laser and Particle Beams, 2024, 36: 094005. doi: 10.11884/HPLPB202436.230403
Citation: Xiong Jie, Dou Guoliang, Sun Liangting, et al. Simulation of the thermal effect on high power Bi target for the large-scale 211At production[J]. High Power Laser and Particle Beams, 2024, 36: 094005. doi: 10.11884/HPLPB202436.230403

用于211At生产的高功率金属Bi靶热效应模拟

doi: 10.11884/HPLPB202436.230403
详细信息
    作者简介:

    熊 杰,xiong.jie@stu.xjtu.edu.cn

    通讯作者:

    赵永涛,zhaoyongtao@xjtu.edu.cn

  • 中图分类号: TL92

Simulation of the thermal effect on high power Bi target for the large-scale 211At production

  • 摘要: 为提高用于医用同位素211At生产的金属Bi靶在高束流功率作用下的可靠性与使役寿命,对多种束流均匀化方法进行了模拟与对比,利用计算流体力学(CFD)方法模拟分析了在wobbler磁铁作用下强度为500 eμA的α束流轰击Bi靶产生的热效应,为靶系统的设计和寿命的延长提供了关键技术支撑。结果表明,通过扫描实现束流均匀化可大幅降低靶上的最大热功率密度;在靶前采用wobbler磁铁对束流进行周期性圆扫描可有效降低Bi靶的表面温度。当扫描频率为50 Hz时,Bi靶最高温度为189.8 ℃,低于其熔点(271.3 ℃),能够满足Bi靶在此高功率束流照射下安全运行的温度要求。
  • 图  1  SK30 回旋加速器示意图

    Figure  1.  Schematic diagram of SK30 Cyclotron

    图  2  扫描后束斑分布

    Figure  2.  Beam distribution after scanning

    图  3  wobbler磁铁实现束流均匀化扫描的原理示意图

    Figure  3.  Schematic diagram of scanning of ion beam with a wobbler magnet

    图  4  Bi靶几何模型

    Figure  4.  Geometry model of the target

    图  5  28.5 MeV α粒子在Bi层和Al衬底中的能量沉积

    Figure  5.  Energy deposition of 28.5 MeV α particles in bismuth layer and aluminum backing

    图  6  未采用wobbler时2 s时刻靶面温度分布

    Figure  6.  Target surface temperature distribution without wobbler at 2 s

    图  7  各时刻靶面温度分布

    Figure  7.  Target surface temperature distribution with wobbler

    图  8  最高温度变化曲线

    Figure  8.  Maximum temperature changes with time

    图  9  不同扫描频率下的最高温度

    Figure  9.  Maximum temperature with different scanning frequencies

    表  1  扫描前后最大流强密度

    Table  1.   Maximum current density before and after scanning

    scanning mode maximum current density/(μA·cm−2)
    before scanning 318.31
    Lissajous scanning(a) 71.16
    Lissajous scanning(b) 113.88
    circular scanning 68.94
    下载: 导出CSV

    表  3  相关材料物性参数

    Table  3.   Physical parameters of materials

    material density/(kg∙m−3) specific heat capacity/(J∙kg−1∙K−1) thermal conductivity/(W·K−1·m−1)
    Bi 9800 130 8
    Al 2719 871 202.4
    water 998.2 4182 0.6
    下载: 导出CSV
  • [1] Li Feize, Yang Yuanyou, Liao Jiali, et al. Recent progress of astatine-211 in endoradiotherapy: Great advances from fundamental properties to targeted radiopharmaceuticals[J]. Chinese Chemical Letters, 2022, 33(7): 3325-3338. doi: 10.1016/j.cclet.2022.03.025
    [2] 陈德胜, 刘葳豪, 黄清钢, 等. 加速器生产医用同位素211At及单抗标记[J]. 化学学报, 2021, 79(11):1376-1384,1416 doi: 10.6023/A21060266

    Chen Desheng, Liu Weihao, Huang Qinggang, et al. Accelerator production of the medical isotope 211At and monoclonal antibody labeling[J]. Acta Chimica Sinica, 2021, 79(11): 1376-1384,1416 doi: 10.6023/A21060266
    [3] Wang Yiwei, Chen Daiyuan, Dos Santos Augusto R, et al. Production review of accelerator-based medical isotopes[J]. Molecules, 2022, 27(16): 5294. doi: 10.3390/molecules27165294
    [4] 张天爵, 温凯, 刘景源, 等. 中高能回旋加速器及固体靶生产医用放射性核素技术研究[J]. 中华核医学与分子影像杂志, 2022, 42(6):340-346 doi: 10.3760/cma.j.cn321828-20220215-00045

    Zhang Tianjue, Wen Kai, Liu Jingyuan, et al. Research on medical radioisotope production technology by medium and high-energy cyclotron and solid target[J]. Chinese Journal of Nuclear Medicine and Molecular Imaging, 2022, 42(6): 340-346 doi: 10.3760/cma.j.cn321828-20220215-00045
    [5] Feng Yutian, Zalutsky M R. Production, purification and availability of 211At: Near term steps towards global access[J]. Nuclear Medicine and Biology, 2021, 100/101: 12-23. doi: 10.1016/j.nucmedbio.2021.05.007
    [6] Kleeven W, Abs M, Delvaux J L, et al. Recent development and progress of IBA cyclotrons[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(24): 2857-2862. doi: 10.1016/j.nimb.2011.04.031
    [7] Ren Jieru, Deng Zhigang, Qi Wei, et al. Observation of a high degree of stopping for laser-accelerated intense proton beams in dense ionized matter[J]. Nature Communications, 2020, 11: 5157. doi: 10.1038/s41467-020-18986-5
    [8] Zhao Yongtao, Zhang Yanning, Cheng Rui, et al. Benchmark experiment to prove the role of projectile excited states upon the ion stopping in plasmas[J]. Physical Review Letters, 2021, 126: 115001. doi: 10.1103/PhysRevLett.126.115001
    [9] Ren Jieru, Ma Bubo, Liu Lirong, et al. Target density effects on charge transfer of laser-accelerated carbon ions in dense plasma[J]. Physical Review Letters, 2023, 130: 095101. doi: 10.1103/PhysRevLett.130.095101
    [10] Wei Wenqing, Zhang Shizheng, Deng Zhigang, et al. Proton-boron fusion yield increased by orders of magnitude with foam targets[DB/OL]. arXiv preprint arXiv: 2308.10878, 2023.
    [11] Oliver C, Ibarra A, Gallego A, et al. Phase-space transformation for a uniform target irradiation at DONES[C]//Proceedings of LINAC 2016. 2017: 424-426.
    [12] Thomsen H D, Møller S P. The beam delivery system of the European Spallation Source[C]//Proceedings of HB2016. 2016: 427-432.
    [13] Tsoupas N. Uniform beam distributions of charged particle beams[J]. AIP Conference Proceedings, 2011, 1336(1): 11-15.
    [14] Renner T R, Chu W T. Wobbler facility for biomedical experiments[J]. Medical Physics, 1987, 14(5): 825-834. doi: 10.1118/1.596009
    [15] Katagiri K, Hojo S, Nakao M, et al. Wobbled beam irradiation system for radioisotope production in NIRS cyclotron facility[C]//Proceedings of the 12th Annual Meeting of Particle Accelerator Society of Japan. 2015: 1380-1383.
    [16] 贾先禄, 张天爵, 吕银龙, 等. 30MeV医用回旋加速器束流输运线上旋转扫描磁铁的研制[J]. 高能物理与核物理, 2007, 31(3):292-295 doi: 10.3321/j.issn:0254-3052.2007.03.014

    Jia Xianlu, Zhang Tianjue, Lv Yinlong, et al. Wobbling magnet design for beam line of CYCIAE-30 medical cyclotron[J]. High Energy Physics and Nuclear Physics, 2007, 31(3): 292-295 doi: 10.3321/j.issn:0254-3052.2007.03.014
    [17] Wang Y, Sato N, Komori Y, et al. Present status of 211At production at the RIKEN AVF cyclotron[C]//Radiochemistry & Nuclear Chemistry. 2020: 192.
    [18] 孙立军. ANSYS Fluent 2020工程案例详解[M]. 北京: 北京大学出版社, 2021

    Sun Lijun. ANSYS Fluent 2020 engineering case[M]. Beijing: Peking University Press, 2021
    [19] Ziegler J F, Ziegler M D, Biersack J P. SRIM – The stopping and range of ions in matter (2010)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11/12): 1818-1823.
    [20] Yang Yao, Zhai Y H, Jiang P Y, et al. Commissioning progress of LEAF at IMP[J]. Journal of Physics: Conference Series, 2020, 1401: 012019. doi: 10.1088/1742-6596/1401/1/012019
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  126
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-15
  • 修回日期:  2024-06-30
  • 录用日期:  2024-06-30
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-08-16

目录

    /

    返回文章
    返回