kHz repetition rate pulse power source based on tri-coaxial cable Blumlein lines driven by hydrogen thyratron
-
摘要: 闪光X射线摄影技术在军事和民用等多个领域具有重要场景。针对重频直线感应加速器高重频的要求,提出了基于氢闸流管驱动三同轴电缆Blumlein线的脉冲功率源方案,设计和研制了一种三同轴电缆,研究了氢闸流管的导通特性,搭建了氢闸流管驱动三同轴电缆Blumlein线脉冲功率源的验证平台,开展了kHz重频脉冲功率源实验研究,以及kHz重频脉冲功率源驱动重频感应腔的实验研究,结果表明:基于氢闸流管驱动三同轴电缆Blumlein线脉冲功率源实现了波形品质优异的kHz重频方波脉冲输出。
-
关键词:
- kHz重频 /
- 氢闸流管 /
- 三同轴电缆Blumlein线 /
- 脉冲功率源 /
- 直线感应加速器
Abstract: Flash X-ray photography technology has important scenarios in military and civil fields. According to the requirement of high repetition rate of the linear induction a ccelerator, we put foruarc a pulse power source scheme based on tri-coaxial cable Blumlein lines driven by hydrogen thyratron. A tri-coaxial cable was designed and developed. The conduction characteristics of hydrogen thyratron were studied. The verification setup for the pulse power source was built. The experimental research on kHz repetition rate pulse power source and kHz repetition rate pulse power source driving induction cavity was carried out. The results show that the tri-coaxial cable Blumlein lines pulse power source driven by hydrogen thyratron can realize the kHz repetition rate square wave output with excellent waveform quality. -
表 1 氢闸流管技术指标
Table 1. Technical specifications of hydrogen thyratron
peak voltage/kV peak current/kA peak power/MW operating coefficient/(V·A·Hz) (di/dt)/(kA/μs) jitter/ns maximum design value 35 2 35 28×109 50 5 optimum experimental value 20 4 80 180×109 140 <1 表 2 氢闸流管驱动三同轴电缆Blumlein线输出的时间抖动
Table 2. Time jitter of the output of tri-coaxial cable Blumlein lines driven by the hydrogen thyratron
time interval ∆ti1/ns ∆ti2/ns 1# 143.6 164.4 2# 143.4 163.8 3# 143.9 164.1 4# 144.3 164.4 5# 142.7 163.3 6# 143.2 163.6 7# 144.8 163.4 8# 142.0 163.0 9# 142.3 164.1 10# 144.0 164.4 range jitter 2.8 1.4 RMS jitter 0.70 0.43 -
[1] 邓建军. 直线感应电子加速器[M]. 北京: 国防工业出版社, 2006Deng Jianjun. Linear induction electron accelerator[M]. Beijing: National Defense Industry Press, 2006 [2] Takayama K, Kishiro J. Induction synchrotron[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 451(1): 304-317. [3] 石金水, 邓建军, 章林文, 等. 神龙二号加速器及其关键技术[J]. 强激光与粒子束, 2016, 28:010201 doi: 10.11884/HPLPB201628.010201Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon-Ⅱ accelerator and its key technology[J]. High Power Laser and Particle Beams, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201 [4] Smith I D. Induction voltage adders and the induction accelerator family[J]. Physical Review, 2004, 7: 064801. [5] Burris-Mog T J. The ASD Scorpius accelerator at the NNSS. Recruitment slides for the University of Nevada, Reno [Slides][R]. LA-UR-20-27989, 2020. [6] Ekdahl Jr C A. Optimum tunes for the DARHT and Scorpius linear induction accelerators[R]. LA-UR-19-21982, 2019. [7] Funk D J. Enhanced capabilities for subcritical experiments (ECSE): portfolio overview[R]. LA-UR-18-28253, 2018. [8] Scarpetti R D, Nath S, Barraza J, et al. Status of the DARHT 2nd axis accelerator at the Los Alamos National Laboratory[C]//Proceedings of 2007 IEEE Particle Accelerator Conference. Albuquerque: IEEE, 2007: 831-835. [9] Starostenko D A, Logachev P V, Akimov A V, et al. Results of operating LIA-2 in radiograph mode[J]. Physics of Particles and Nuclei Letters, 2014, 11(5): 660-664. doi: 10.1134/S1547477114050264 [10] 陈永涛. 强动载下金属样品的表面微喷及融化破碎现象研究[R]. GF-A0203048G, 2015Chen Yongtao. Research on surface microjet and melting and fragmentation of metal samples under forced dynamic load[R]. GF-A0203048G, 2015 [11] Patil N, Das D, Goebel K, et al. Identification of failure precursor parameters for insulated gate bipolar transistors (IGBTs)[C]//Proceedings of 2008 International Conference on Prognostics and Health Management. Denver: IEEE, 2008: 1-5. [12] Sampayan S E, Sampayan K C, Caporaso G J, et al. Megavolt bremsstrahlung measurements from linear induction accelerators demonstrate possible use as a FLASH radiotherapy source to reduce acute toxicity[J]. Scientific Reports, 2021, 11: 17104. doi: 10.1038/s41598-021-95807-9 [13] Gao Feng, Yang Yiwei, Zhu Hongyu, et al. First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays[J]. Radiotherapy & Oncology, 2022, 166: 44-50. [14] Chabi S, van To T H, Leavitt R, et al. Ultra-high-dose-rate FLASH and conventional-dose-rate irradiation differentially affect human acute lymphoblastic leukemia and normal hematopoiesis[J]. International Journal of Radiation Oncology·Biology·Physics, 2021, 109(3): 819-829. [15] Diagnostic capability allows scientists to create X-ray movies[EB/OL]. https://www.llnl.gov/news/diagnostic-capability-allows-scientists-create-x-ray-movies. [16] Jaffe E. Cinema in a nanosecond: S&TR September 2022[EB/OL]. https://str.llnl.gov/2022-09/pogue. [17] Velas K M, Ellsworth J L, Falabella S, et al. Bipolar pulsed power for active reset of induction cells[R]. LLNL-PROC-852425, 2023. [18] 李海波, 齐欣, 张文庆, 等. CSNS的kicker电源闸流管触发特性分析[J]. 强激光与粒子束, 2021, 33:105003 doi: 10.11884/HPLPB202133.210170Li Haibo, Qi Xin, Zhang Wenqing, et al. Thyratron trigger characteristics analysis of CSNS kicker power supply[J]. High Power Laser and Particle Beam, 2021, 33: 105003 doi: 10.11884/HPLPB202133.210170 [19] Wei Jie, Fu Sinian, Tang Jingyu, et al. China Spallation Neutron Source—an overview of application prospects[J]. Chinese Physics C, 2009, 33(11): 1033-1042. doi: 10.1088/1674-1137/33/11/021 [20] 蔡正平, 徐旭哲, 武志勇. 450 kV高功率速调管调制器系统[J]. 强激光与粒子束, 2010, 22(7):1677-1681 doi: 10.3788/HPLPB20102207.1677Cai Zhengping, Xu Xuzhe, Wu Zhiyong. 450 kV high power klystron modulator system[J]. High Power Laser and Particle Beams, 2010, 22(7): 1677-1681 doi: 10.3788/HPLPB20102207.1677 [21] 谌怡, 刘毅, 王卫, 等. 层叠Blumlein纳秒脉冲形成线设计与实验[J]. 强激光与粒子束, 2014, 26:045012 doi: 10.11884/HPLPB201426.045012Shen Yi, Liu Yi, Wang Wei, et al. Design and experiments of stacked Blumlein nano-second pulse forming lines[J]. High Power Laser and Particle Beams, 2014, 26: 045012 doi: 10.11884/HPLPB201426.045012