留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢闸流管驱动三同轴电缆Blumlein线的kHz重频脉冲功率源

谌怡 黄子平 张篁 刘毅 丁明军 夏连胜

谌怡, 黄子平, 张篁, 等. 氢闸流管驱动三同轴电缆Blumlein线的kHz重频脉冲功率源[J]. 强激光与粒子束, 2024, 36: 055009. doi: 10.11884/HPLPB202436.230420
引用本文: 谌怡, 黄子平, 张篁, 等. 氢闸流管驱动三同轴电缆Blumlein线的kHz重频脉冲功率源[J]. 强激光与粒子束, 2024, 36: 055009. doi: 10.11884/HPLPB202436.230420
Shen Yi, Huang Ziping, Zhang Huang, et al. kHz repetition rate pulse power source based on tri-coaxial cable Blumlein lines driven by hydrogen thyratron[J]. High Power Laser and Particle Beams, 2024, 36: 055009. doi: 10.11884/HPLPB202436.230420
Citation: Shen Yi, Huang Ziping, Zhang Huang, et al. kHz repetition rate pulse power source based on tri-coaxial cable Blumlein lines driven by hydrogen thyratron[J]. High Power Laser and Particle Beams, 2024, 36: 055009. doi: 10.11884/HPLPB202436.230420

氢闸流管驱动三同轴电缆Blumlein线的kHz重频脉冲功率源

doi: 10.11884/HPLPB202436.230420
基金项目: 国家自然科学基金项目(51977200、12275255)
详细信息
    作者简介:

    谌 怡,ifpshen@caep.cn

    通讯作者:

    夏连胜,xialiansheng@caep.cn

  • 中图分类号: TL53

kHz repetition rate pulse power source based on tri-coaxial cable Blumlein lines driven by hydrogen thyratron

  • 摘要: 闪光X射线摄影技术在军事和民用等多个领域具有重要场景。针对重频直线感应加速器高重频的要求,提出了基于氢闸流管驱动三同轴电缆Blumlein线的脉冲功率源方案,设计和研制了一种三同轴电缆,研究了氢闸流管的导通特性,搭建了氢闸流管驱动三同轴电缆Blumlein线脉冲功率源的验证平台,开展了kHz重频脉冲功率源实验研究,以及kHz重频脉冲功率源驱动重频感应腔的实验研究,结果表明:基于氢闸流管驱动三同轴电缆Blumlein线脉冲功率源实现了波形品质优异的kHz重频方波脉冲输出。
  • 图  1  氢闸流管和三同轴电缆

    Figure  1.  Hydrogen thyratron and tri-coaxial cable

    图  2  三同轴电缆Blumlein线电路示意图

    Figure  2.  Schematic diagram of circuit of tri-coaxial cable Blumlein line

    图  3  三同轴电缆Blumlein线脉冲功率源

    Figure  3.  Tri-coaxial cable Blumlein lines pulse power source

    图  4  三同轴电缆的静电场仿真和三维瞬态电磁场仿真输出

    Figure  4.  Electrostatic field simulation and output of three-dimensional instantaneous electromagnetic field simulation

    图  5  1S1B和1S5B脉冲功率源输出波形

    Figure  5.  Output waveforms of the 1S1B and 1S5B pulse power sources

    图  6  脉冲功率源重频运行性能

    Figure  6.  Repetition rate operation performance of pulse power source

    图  7  感应加速单元重频运行性能

    Figure  7.  Repetition rate operation performance of induction acceleration cell

    表  1  氢闸流管技术指标

    Table  1.   Technical specifications of hydrogen thyratron

    peak voltage/kV peak current/kA peak power/MW operating coefficient/(V·A·Hz) (di/dt)/(kA/μs) jitter/ns
    maximum design value 35 2 35 28×109 50 5
    optimum experimental value 20 4 80 180×109 140 <1
    下载: 导出CSV

    表  2  氢闸流管驱动三同轴电缆Blumlein线输出的时间抖动

    Table  2.   Time jitter of the output of tri-coaxial cable Blumlein lines driven by the hydrogen thyratron

    time interval ti1/ns ti2/ns
    1# 143.6 164.4
    2# 143.4 163.8
    3# 143.9 164.1
    4# 144.3 164.4
    5# 142.7 163.3
    6# 143.2 163.6
    7# 144.8 163.4
    8# 142.0 163.0
    9# 142.3 164.1
    10# 144.0 164.4
    range jitter 2.8 1.4
    RMS jitter 0.70 0.43
    下载: 导出CSV
  • [1] 邓建军. 直线感应电子加速器[M]. 北京: 国防工业出版社, 2006

    Deng Jianjun. Linear induction electron accelerator[M]. Beijing: National Defense Industry Press, 2006
    [2] Takayama K, Kishiro J. Induction synchrotron[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 451(1): 304-317.
    [3] 石金水, 邓建军, 章林文, 等. 神龙二号加速器及其关键技术[J]. 强激光与粒子束, 2016, 28:010201 doi: 10.11884/HPLPB201628.010201

    Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon-Ⅱ accelerator and its key technology[J]. High Power Laser and Particle Beams, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201
    [4] Smith I D. Induction voltage adders and the induction accelerator family[J]. Physical Review, 2004, 7: 064801.
    [5] Burris-Mog T J. The ASD Scorpius accelerator at the NNSS. Recruitment slides for the University of Nevada, Reno [Slides][R]. LA-UR-20-27989, 2020.
    [6] Ekdahl Jr C A. Optimum tunes for the DARHT and Scorpius linear induction accelerators[R]. LA-UR-19-21982, 2019.
    [7] Funk D J. Enhanced capabilities for subcritical experiments (ECSE): portfolio overview[R]. LA-UR-18-28253, 2018.
    [8] Scarpetti R D, Nath S, Barraza J, et al. Status of the DARHT 2nd axis accelerator at the Los Alamos National Laboratory[C]//Proceedings of 2007 IEEE Particle Accelerator Conference. Albuquerque: IEEE, 2007: 831-835.
    [9] Starostenko D A, Logachev P V, Akimov A V, et al. Results of operating LIA-2 in radiograph mode[J]. Physics of Particles and Nuclei Letters, 2014, 11(5): 660-664. doi: 10.1134/S1547477114050264
    [10] 陈永涛. 强动载下金属样品的表面微喷及融化破碎现象研究[R]. GF-A0203048G, 2015

    Chen Yongtao. Research on surface microjet and melting and fragmentation of metal samples under forced dynamic load[R]. GF-A0203048G, 2015
    [11] Patil N, Das D, Goebel K, et al. Identification of failure precursor parameters for insulated gate bipolar transistors (IGBTs)[C]//Proceedings of 2008 International Conference on Prognostics and Health Management. Denver: IEEE, 2008: 1-5.
    [12] Sampayan S E, Sampayan K C, Caporaso G J, et al. Megavolt bremsstrahlung measurements from linear induction accelerators demonstrate possible use as a FLASH radiotherapy source to reduce acute toxicity[J]. Scientific Reports, 2021, 11: 17104. doi: 10.1038/s41598-021-95807-9
    [13] Gao Feng, Yang Yiwei, Zhu Hongyu, et al. First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays[J]. Radiotherapy & Oncology, 2022, 166: 44-50.
    [14] Chabi S, van To T H, Leavitt R, et al. Ultra-high-dose-rate FLASH and conventional-dose-rate irradiation differentially affect human acute lymphoblastic leukemia and normal hematopoiesis[J]. International Journal of Radiation Oncology·Biology·Physics, 2021, 109(3): 819-829.
    [15] Diagnostic capability allows scientists to create X-ray movies[EB/OL]. https://www.llnl.gov/news/diagnostic-capability-allows-scientists-create-x-ray-movies.
    [16] Jaffe E. Cinema in a nanosecond: S&TR September 2022[EB/OL]. https://str.llnl.gov/2022-09/pogue.
    [17] Velas K M, Ellsworth J L, Falabella S, et al. Bipolar pulsed power for active reset of induction cells[R]. LLNL-PROC-852425, 2023.
    [18] 李海波, 齐欣, 张文庆, 等. CSNS的kicker电源闸流管触发特性分析[J]. 强激光与粒子束, 2021, 33:105003 doi: 10.11884/HPLPB202133.210170

    Li Haibo, Qi Xin, Zhang Wenqing, et al. Thyratron trigger characteristics analysis of CSNS kicker power supply[J]. High Power Laser and Particle Beam, 2021, 33: 105003 doi: 10.11884/HPLPB202133.210170
    [19] Wei Jie, Fu Sinian, Tang Jingyu, et al. China Spallation Neutron Source—an overview of application prospects[J]. Chinese Physics C, 2009, 33(11): 1033-1042. doi: 10.1088/1674-1137/33/11/021
    [20] 蔡正平, 徐旭哲, 武志勇. 450 kV高功率速调管调制器系统[J]. 强激光与粒子束, 2010, 22(7):1677-1681 doi: 10.3788/HPLPB20102207.1677

    Cai Zhengping, Xu Xuzhe, Wu Zhiyong. 450 kV high power klystron modulator system[J]. High Power Laser and Particle Beams, 2010, 22(7): 1677-1681 doi: 10.3788/HPLPB20102207.1677
    [21] 谌怡, 刘毅, 王卫, 等. 层叠Blumlein纳秒脉冲形成线设计与实验[J]. 强激光与粒子束, 2014, 26:045012 doi: 10.11884/HPLPB201426.045012

    Shen Yi, Liu Yi, Wang Wei, et al. Design and experiments of stacked Blumlein nano-second pulse forming lines[J]. High Power Laser and Particle Beams, 2014, 26: 045012 doi: 10.11884/HPLPB201426.045012
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  37
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-29
  • 修回日期:  2024-04-25
  • 录用日期:  2024-04-25
  • 网络出版日期:  2024-04-07
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回