留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1.3 GHz 9-cell高性能超导腔高阶模耦合器电磁及热分析研究

王子晗 潘卫民 米正辉 翟纪元 贺斐思 沙鹏 王光伟 刘铭

王子晗, 潘卫民, 米正辉, 等. 1.3 GHz 9-cell高性能超导腔高阶模耦合器电磁及热分析研究[J]. 强激光与粒子束, 2024, 36: 074002. doi: 10.11884/HPLPB202436.230425
引用本文: 王子晗, 潘卫民, 米正辉, 等. 1.3 GHz 9-cell高性能超导腔高阶模耦合器电磁及热分析研究[J]. 强激光与粒子束, 2024, 36: 074002. doi: 10.11884/HPLPB202436.230425
Wang Zihan, Pan Weimin, Mi Zhenghui, et al. Electromagnetic and thermal analysis research of high-order-mode coupler for 1.3 GHz 9-cell high performance superconducting cavity[J]. High Power Laser and Particle Beams, 2024, 36: 074002. doi: 10.11884/HPLPB202436.230425
Citation: Wang Zihan, Pan Weimin, Mi Zhenghui, et al. Electromagnetic and thermal analysis research of high-order-mode coupler for 1.3 GHz 9-cell high performance superconducting cavity[J]. High Power Laser and Particle Beams, 2024, 36: 074002. doi: 10.11884/HPLPB202436.230425

1.3 GHz 9-cell高性能超导腔高阶模耦合器电磁及热分析研究

doi: 10.11884/HPLPB202436.230425
基金项目: 中国科学院青年创新促进会-人才支撑体系专项(292022000038)
详细信息
    作者简介:

    王子晗,wangzihan@ihep.ac.cn

    通讯作者:

    米正辉,mizh@ihep.ac.cn

  • 中图分类号: TL503.2

Electromagnetic and thermal analysis research of high-order-mode coupler for 1.3 GHz 9-cell high performance superconducting cavity

  • 摘要: 中国科学院高能物理研究所于2023年6月完成了高品质因数1.3 GHz超导加速模组研发,在国际上率先实现了中温退火高品质因数超导腔模组技术路线。模组中集成了八只经过中温退火工艺处理的1.3 GHz 9-cell超导腔,在模组的测试过程中超导腔的高阶模耦合器温升异常,导致超导腔无法在高梯度下稳定工作。通过HFSS软件和CST软件中的微波仿真模块对高阶模耦合器进行电磁分析,再通过理论和Ansys Workbench软件对高阶模耦合器进行热仿真分析,并结合模组的高功率实验,找到了超导腔性能异常的原因,并对超导腔高阶模耦合器的冷却方式进行了进一步的优化,解决了模组中超导腔高梯度下的不稳定性。
  • 图  1  1.3 GHz 9-cell超导腔及高阶模耦合器结构

    Figure  1.  1.3 GHz 9-cell superconducting cavity and HOM coupler

    图  2  1.3 GHz 9-cell腔高阶模耦合器及其等效电路

    Figure  2.  1.3 GHz 9-cell HOM coupler and its equivalent circuit

    图  3  CST中1.3 GHz超导腔高阶模耦合器

    Figure  3.  1.3 GHz cavity and HOM coupler in CST

    图  4  高阶模耦合器的S参数曲线

    Figure  4.  The S-parameter of the HOM coupler in CST

    图  5  超导腔Qe随着间隙长度值变化情况

    Figure  5.  Qe with the gap in cavity

    图  6  高阶模耦合器调谐工装

    Figure  6.  Tuning fixture of HOM couplers

    图  7  HOM耦合器磁场示意图

    Figure  7.  Magnetic field in HOM coupler

    图  8  馈通结构截面图和实物图

    Figure  8.  Sketch showing the cross-section of the feed through parts and a photo of a DESY feedthrough

    图  9  1.3 GHz 9cell模组超导腔低温控制界面及异常温升现象

    Figure  9.  Cryogenic system of 1.3 GHz module and abnormal temperature rise

    图  10  1.3 GHz模组高阶模耦合器热锚图

    Figure  10.  Thermal anchor of 1.3 GHz model HOM coupler

    图  11  传热流程图

    Figure  11.  Heat transfer flow diagram

    图  12  热锚及整体结构示意图(热锚为右边圆柱)

    Figure  12.  Anchor and cavity structure (the right cylinder represents the anchor)

    图  13  高阶模耦合器结构

    Figure  13.  Model of HOM coupler

    图  14  热锚连接良好时天线温度分布

    Figure  14.  Antenna temperature distribution when anchor is connected well

    图  15  热锚连接不好时天线温度分布

    Figure  15.  Antenna temperature distribution when anchor is not connected well

    表  1  1.3 GHz模组两次测试腔因热锚导致可用梯度的变化对比

    Table  1.   1.3 GHz modules’ usable cavity gradient contrast because of the connection of anchor in two tests

    CAV# usable gradient of the
    first test/(MV·m−1)
    usable gradient of the
    second test/(MV·m−1)
    1 15 26.6
    4 18.1 27.7
    5 9 26.5
    下载: 导出CSV
  • [1] Solyak N, Awida M, Hocker A, et al. Higher order mode coupler heating in continuous wave operation[J]. Physics Procedia, 2015, 79: 63-73. doi: 10.1016/j.phpro.2015.11.063
    [2] Solyak N, Awida M, Grassellino A, et al. HOM coupler performance in CW regime in horizontal and vertical tests[C]//Proceedings of SRF2015. 2015: 1349-1353.
    [3] Awida M, Khabiboulline T, Gonin I, et al. On the design of higher order mode antennas for LCLS II[C]//Proceedings of LINAC2014. 2014: 161-164.
    [4] 郑洪娟. ILC/CEPC超导加速系统设计及关键技术研究[D]. 北京: 中国科学院大学, 2016

    Hongjuan Zheng. Superconducting Radio Frequency System Design and Key Technology Research for ILC/CEPC [D]. Beijing: University of Chinese Academy of Sciences, 2016
    [5] Wu G, Wang H, Rimmer R, et al. Electromagnetic simulations of coaxial type HOM coupler[C]//Proceedings of the 12th International Workshop on RF Superconductivity. 2005: 600-603.
    [6] Padamsee H, Knobloch J, Hays T, et al. RF superconductivity for accelerators[J]. Physics Today, 1999, 52(7): 54-54.
    [7] Reece C E, Daly E F, Elliott T, et al. High thermal conductivity cryogenic RF feedthroughs for higher order mode couplers[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 4108-4110.
    [8] Watanabe K, Noguchi S, Kako E, et al. Design of N-type feedthrough for HOM coupler for cERL injector cavity[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 734: 32-37.
    [9] Kostin D, Möller W D, Sekutowicz J, et al. Tesla type 9-cell cavities continuous wave tests[C]//Proceedings of SRF2009. 2009: 338-341.
    [10] Kneisel P, Ciovati G, Myneni G R, et al. Testing of HOM coupler designs on a single cell niobium cavity[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 4012-4014.
    [11] Wu G, Harms E, Khabiboulline T. Evaluation of HOM coupler probe heating for 3.9 GHz cavities[R]. FNAL-TD-08-019, 2008.
    [12] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006

    Yang Shiming, Tao Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  78
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-01
  • 修回日期:  2024-03-05
  • 录用日期:  2024-03-05
  • 网络出版日期:  2024-04-15
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回