留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大规模激光相干合成主动相位控制技术研究进展

周宏冰 张昊宇 李敏 冯曦 谢亮华 刘玙 楚秋慧 闫玥芳 陶汝茂 林宏奂 王建军 颜立新 景峰

周宏冰, 张昊宇, 李敏, 等. 大规模激光相干合成主动相位控制技术研究进展[J]. 强激光与粒子束, 2024, 36: 061001. doi: 10.11884/HPLPB202436.230426
引用本文: 周宏冰, 张昊宇, 李敏, 等. 大规模激光相干合成主动相位控制技术研究进展[J]. 强激光与粒子束, 2024, 36: 061001. doi: 10.11884/HPLPB202436.230426
Zhou Hongbing, Zhang Haoyu, Li Min, et al. Progress in active phase control for large-scale coherent laser beam combining[J]. High Power Laser and Particle Beams, 2024, 36: 061001. doi: 10.11884/HPLPB202436.230426
Citation: Zhou Hongbing, Zhang Haoyu, Li Min, et al. Progress in active phase control for large-scale coherent laser beam combining[J]. High Power Laser and Particle Beams, 2024, 36: 061001. doi: 10.11884/HPLPB202436.230426

大规模激光相干合成主动相位控制技术研究进展

doi: 10.11884/HPLPB202436.230426
基金项目: 国家自然科学基金项目(62205317)
详细信息
    作者简介:

    周宏冰 zhouhb21@mails.tsinghua.edu.cn

    通讯作者:

    陶汝茂 supertaozhi@163.com

  • 中图分类号: O436

Progress in active phase control for large-scale coherent laser beam combining

  • 摘要: 大规模激光相干合成是突破单口径激光特性极限、获得超高峰值/平均功率、超大脉冲能量、超高空/谱亮度等极端特性激光的有效技术路径之一,而大规模激光相干合成的关键是主动相位控制。主动相位控制技术可以对各路光束相位进行主动控制,补偿相位噪声引起的相干特性退化、合成效率下降,获得高品质的合成激光。自相干合成技术提出以来,研究人员开发了多种主动相位控制方法用于相干合成相位校正,其中适用于大规模激光相干合成的主动相位控制方法也得到了飞速发展。系统梳理了大规模激光相干合成的主动相位控制方法,深入分析了不同方法的原理、特点、适用场景和扩展能力,介绍了不同方法取得的相干合成研究最新进展及标志性成果,报道了19通道闭环上升时间仅6 μs的相干合成锁相控制突破性结果,最后总结和展望了主动相位控制方法的发展趋势。
  • 图  1  主动相位控制方法分类

    Figure  1.  Categories of active phase control methods

    图  2  倾斜干涉法测量相位的基本原理[38]

    Figure  2.  Principle of phase measurement by inclined interference[38]

    图  3  基于干涉法的61路飞秒脉冲光纤激光相干合成的(a)阵列结构、干涉条纹图像和(b)实验结果[42]

    Figure  3.  (a) Array structure and interference fringe pattern and (b) experiment results of interference-based coherent beam combining of 61 femtosecond fiber lasers[42]

    图  4  基于干涉法的1 027路相干合成的(a)系统结构和(b)实验结果[44]

    Figure  4.  (a) System setup and (b) experiment results in interference-based coherent beam combining of 1 027 channels[44]

    图  5  (a)107路SPGD相干合成实验系统及控制效果[60],(b)19路20 kW级SPGD相干合成的开环和闭环光斑图像[17]

    Figure  5.  (a) Experiment system and control effect of 107-channel SPGD coherent beam combining[60],(b) beam pattern of 19-channel 20 kW class SPGD coherent beam combining[17]

    图  6  基于SPGD算法的61路相干合成的开环和闭环归一化强度

    Figure  6.  Normalized intensity in open- and closed-loop of SPGD-based 61-channel coherent beam combining

    图  7  分级SPGD算法[73]

    Figure  7.  Multi-stage SPGD[73]

    图  8  多抖动法相干合成系统结构图

    Figure  8.  Diagram of coherent beam combining system based on multi-dithering method

    图  9  多抖动法32路相干合成控制前后的强度变化和闭环控制残差[78]

    Figure  9.  Intensity comparison before and after control and closed-loop phase residual in 32-channel multi-dithering coherent beam combining[78]

    图  10  基于高速多抖动法的19路相干合成的(a)实验光路图、(b)锁相上升时间;相位控制板的(c)带宽评估系统和(d)带宽测试结果

    Figure  10.  (a) Experiment setup and (b) phase-locking rising time of 19-channel coherent beam combining based on high-speed multi-dithering method. (c) Bandwidth evaluation system and (d) bandwidth test result of the phase control circuit

    图  11  基于级联多抖动法的2×4路相干合成[86]

    Figure  11.  2×4 coherent beam combining based on cascaded multi-dithering method[86]

    图  12  PIM相位控制的系统设置[87]

    Figure  12.  System setup of PIM phase control[87]

    图  13  基于PIM的37路光纤放大器相干合成[89]

    Figure  13.  PIM coherent beam combining of 37-channel fiber amplifiers[89]

    图  14  PIM-PR控制方法[88]

    Figure  14.  PIM-PR control method[88]

    图  15  基于PIM的81路相干合成的DOE传输函数及模拟和实验光斑强度分布[92]

    Figure  15.  DOE transmission function and intensity profile in simulation and experiment of 81-channel DOE coherent beam combining based on PIM[92]

    图  16  CNN的建立和训练过程[115]

    Figure  16.  Establishment and training process of CNN[115]

    图  17  准强化学习100路相干合成的实验系统设置和收敛曲线[100]

    Figure  17.  System setup and convergence curves of 100-channel CBC by quasi-reinforcement learning[100]

    图  18  基于神经网络算法的81路相干合成[120]

    Figure  18.  81-channel coherent beam combining based on neural network algorithm[120]

    图  19  CNN和SPGD算法(a)在不同初始条件下的7路合成收敛曲线和(b)收敛时间随路数的变化[122]

    Figure  19.  (a) Convergence curve of 7-channel coherent beam combining under different initial conditions and (b) convergence time versus element number by CNN and SPGD[122]

    图  20  DDRM算法相位控制的收敛曲线[124]

    Figure  20.  Convergence curves of phase control by DDRM algorithm[124]

    图  21  (a)传统损失函数和(b)周期损失函数训练的CNN在不同真实相位下的预测误差及其统计分布[125]

    Figure  21.  Prediction errors and their statistic distribution for various true phases as CNN trained by (a) traditional and (b) periodical loss function[125]

    表  1  大规模光纤激光相干合成的代表性成果

    Table  1.   Representative results of large-scale coherent beam combining of fiber lasers

    year number of channels institution method single step time rising time residual
    2011 64[28] Thales Research & Technology interference 50 ms λ/10
    2011 32[78] University of New Mexico multi-dithering 2.45 μs λ/71
    2017 37[89] Université de Limoges PIM 1 ms λ/25
    2020 61[42] Thales Research & Technology interference 1 ms λ/55
    2020 107[60] National University of Defense Technology SPGD 1 μs λ/22
    2021 81[92] Lawrence Berkeley National Lab PIM 33 ms
    2021 81[120] Lawrence Berkeley National Lab machine learning ~10 ms ~0.4 s
    2022 61 China Academy of Engineering Physics SPGD ~40 ms λ/37
    2022 100[100] Université de limoges machine learning 0.4 s ~2.4 s λ/30
    2022 397[43] National University of Defense Technology interference 5 ms λ/31
    2023 1027[44] National University of Defense Technology interference 5 ms λ/27
    2023 19 China Academy of Engineering Physics multi-dithering 2 μs 6 μs λ/56
    下载: 导出CSV

    表  2  主动相位控制方法的对比

    Table  2.   Comparison of active phase control methods

    method system requirement execution rate control bandwidth optical complexity algorithm complexity
    interference tiled aperture slow medium high medium
    SPGD none medium inversely proportional to channels low low
    multi-dithering none fast high low medium
    PIM DOE/tiled aperture fast high medium medium
    machine learning DOE/tiled aperture slow medium low high
    下载: 导出CSV
  • [1] Klenke A, Müller M, Stark H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0902709.
    [2] Linslal C L, Ayyaswamy P, Maji S, et al. Challenges in coherent beam combining of high power fiber amplifiers: a review[J]. ISSS Journal of Micro and Smart Systems, 2022, 11(1): 277-293. doi: 10.1007/s41683-022-00099-4
    [3] 周朴, 粟荣涛, 马阎星, 等. 激光相干合成的研究进展: 2011—2020[J]. 中国激光, 2021, 48:0408003

    Zhou Pu, Su Rongtao, Ma Yanxing, et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 2021, 48: 0408003
    [4] 何兵, 李炳霖, 杨依枫, 等. 基于衍射光学元件的激光相干合成研究进展[J]. 强激光与粒子束, 2023, 35:041002 doi: 10.11884/HPLPB202335.220282

    He Bing, Li Binglin, Yang Yifeng, et al. Coherent beam combining of fiber laser array based on diffractive optical element[J]. High Power Laser and Particle Beams, 2023, 35: 041002 doi: 10.11884/HPLPB202335.220282
    [5] McNaught S J, Komine H, Weiss S B, et al. 100 kW coherently combined Slab MOPAs[C]//Conference on Lasers and Electro-Optics 2009. 2009: CThA1.
    [6] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
    [7] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 0904123.
    [8] Shi Wei, Schulzgen A, Amezcua R, et al. Fiber lasers and their applications: introduction[J]. Journal of the Optical Society of America B, 2017, 34: FLA1. doi: 10.1364/JOSAB.34.00FLA1
    [9] Hecht J. High-power fiber lasers[J]. Optics and Photonics News, 2018, 29(10): 30-37. doi: 10.1364/OPN.29.10.000030
    [10] Tao Rumao, Wang Xiaolin, Zhou Pu. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0903319.
    [11] 王小林, 周朴, 粟荣涛, 等. 高功率光纤激光相干合成的现状、趋势与挑战[J]. 中国激光, 2017, 44:0201001 doi: 10.3788/CJL201744.0201001

    Wang Xiaolin, Zhou Pu, Su Rongtao, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44: 0201001 doi: 10.3788/CJL201744.0201001
    [12] 闫玥芳, 陶汝茂, 刘玙, 等. 基于光纤合束器件的高功率全光纤相干合成技术研究进展与展望[J]. 强激光与粒子束, 2023, 35:041005 doi: 10.11884/HPLPB202335.220316

    Yan Yuefang, Tao Rumao, Liu Yu, et al. Research progress and prospect of high power all-fiber coherent beam combination based on fiber combining devices[J]. High Power Laser and Particle Beams, 2023, 35: 041005 doi: 10.11884/HPLPB202335.220316
    [13] Fathi H, Närhi M, Gumenyuk R. Towards ultimate high-power scaling: coherent beam combining of fiber lasers[J]. Photonics, 2021, 8: 566. doi: 10.3390/photonics8120566
    [14] Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
    [15] Stark H, Benner M, Buldt J, et al. Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system[J]. Optics Letters, 2023, 48(11): 3007-3010. doi: 10.1364/OL.488617
    [16] Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam for material processing[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 1126021.
    [17] 吴坚, 马阎星, 马鹏飞, 等. 光纤激光相干合成20 kW级高功率输出[J]. 红外与激光工程, 2021, 50:20210621 doi: 10.3788/IRLA20210621

    Wu Jian, Ma Yanxing, Ma Pengfei, et al. Fiber laser coherent synthesis 20 kW high power output[J]. Infrared and Laser Engineering, 2021, 50: 20210621 doi: 10.3788/IRLA20210621
    [18] 李雨薇, 刘玙, 谢亮华, 等. 全纤化相干合成实现高稳定性近单模万瓦激光输出[J]. 中国激光, 2023, 50:0316001 doi: 10.3788/CJL221476

    Li Yuwei, Liu Yu, Xie Lianghua, et al. All-fiber coherent synthesis for high stability near single mode ten thousand watt laser output[J]. Chinese Journal of Lasers, 2023, 50: 0316001 doi: 10.3788/CJL221476
    [19] Boost for nLight with big defense order[EB/OL]. (2023-04-08). https://optics.org/news/14/5/1.
    [20] Müller M, Aleshire C, Buldt J, et al. Scaling potential of beam-splitter-based coherent beam combination[J]. Optics Express, 2021, 29(17): 27900-27911. doi: 10.1364/OE.433596
    [21] Zuo Jiexi, Lin Xuechun. High-power laser systems[J]. Laser & Photonics Reviews, 2022, 16: 2100741.
    [22] Wang Yanshan, Feng Yujun, Ma Yi, et al. 2.5 kW narrow linewidth linearly polarized all-fiber MOPA with cascaded phase-modulation to suppress SBS induced self-pulsing[J]. IEEE Photonics Journal, 2020, 12: 1502815.
    [23] Wang Yanshan, Sun Yinhong, Peng Wanjing, et al. 3.25 kW all-fiberized and polarization-maintained Yb-doped amplifier with a 20 GHz linewidth and near-diffraction-limited beam quality[J]. Applied Optics, 2021, 60(21): 6331-6336. doi: 10.1364/AO.431081
    [24] Chu Qiuhui, Shu Qiang, Li Fengyun, et al. Power scaling of high-power linearly polarized fiber lasers with <10 GHz linewidth[J]. Frontiers in Physics, 2023, 11: 1198305. doi: 10.3389/fphy.2023.1198305
    [25] Augst S J, Fan T Y, Sanchez A. Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers[J]. Optics Letters, 2004, 29(5): 474-476. doi: 10.1364/OL.29.000474
    [26] Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China: Information Sciences, 2019, 62: 41301. doi: 10.1007/s11432-018-9742-0
    [27] Goodno G D, McNaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J]. Optics Letters, 2010, 35(10): 1542-1544. doi: 10.1364/OL.35.001542
    [28] Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 2011, 19(18): 17053-17058. doi: 10.1364/OE.19.017053
    [29] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688. doi: 10.1364/OL.36.002686
    [30] Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 2012, 37(14): 2832-2834. doi: 10.1364/OL.37.002832
    [31] Björck M, Henriksson M, Sjökvist L. Bandwidth and stability of the stochastic parallel gradient descent algorithm for phase control in coherent beam combination[J]. Applied Optics, 2021, 60(15): 4366-4374. doi: 10.1364/AO.422630
    [32] Hansch T W, Couillaud B. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity[J]. Optics Communications, 1980, 35(3): 441-444. doi: 10.1016/0030-4018(80)90069-3
    [33] Jolivet V, Bourdon P, Bennai B, et al. Beam shaping of single-mode and multimode fiber amplifier arrays for propagation through atmospheric turbulence[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 257-268. doi: 10.1109/JSTQE.2009.2011141
    [34] Nabors C D. Effects of phase errors on coherent emitter arrays[J]. Applied Optics, 1994, 33(12): 2284-2289. doi: 10.1364/AO.33.002284
    [35] Goodno G D, Shih C C, Rothenberg J E. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Optics Express, 2010, 18(24): 25403-25414. doi: 10.1364/OE.18.025403
    [36] Leshchenko V E. Coherent combining efficiency in tiled and filled aperture approaches[J]. Optics Express, 2015, 23(12): 15944-15970. doi: 10.1364/OE.23.015944
    [37] Bellanger C, Toulon B, Primot J, et al. Collective phase measurement of an array of fiber lasers by quadriwave lateral shearing interferometry for coherent beam combining[J]. Optics Letters, 2010, 35(23): 3931-3933. doi: 10.1364/OL.35.003931
    [38] Antier M, Bourderionnet J, Larat C, et al. kHz closed loop interferometric technique for coherent fiber beam combining[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 182-187. doi: 10.1109/JSTQE.2014.2302444
    [39] Chang Qi, Hou Tianyue, Chang Hongxiang, et al. Iteration-free, simultaneous correction of piston and tilt distortions in large-scale coherent beam combination systems[J]. Optics Express, 2021, 29(21): 34863-34879. doi: 10.1364/OE.442313
    [40] Le Dortz J, Heilmann A, Antier M, et al. Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers[J]. Optics Letters, 2017, 42(10): 1887-1890. doi: 10.1364/OL.42.001887
    [41] Fsaifes I, Daniault L, Heilmann A, et al. Coherent beam combining of 37 femtosecond fiber amplifiers[C]//Proceedings of 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. 2019: 1.
    [42] Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031
    [43] Chang Qi, Hou Tianyue, Long Jinhu, et al. Experimental phase stabilization of a 397-channel laser beam array via image processing in dynamic noise environment[J]. Journal of Lightwave Technology, 2022, 40(19): 6542-6547.
    [44] 常琦, 高志强, 邓宇, 等. 强噪声下光纤激光相干合成突破千路[J]. 中国激光, 2023, 50:0616001 doi: 10.3788/CJL221540

    Chang Qi, Gao Zhiqiang, Deng Yu, et al. Fiber laser coherent synthesis breaks through a thousand channels under strong noise[J]. Chinese Journal of Lasers, 2023, 50: 0616001 doi: 10.3788/CJL221540
    [45] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907-909. doi: 10.1364/OL.22.000907
    [46] Vorontsov M A, Sivokon V P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction[J]. Journal of the Optical Society of America A, 1998, 15(10): 2745-2758. doi: 10.1364/JOSAA.15.002745
    [47] Weyrauch T, Vorontsov M A, Bifano T G, et al. Adaptive optics system with micromachined mirror array and stochastic gradient descent controller[C]//Proceedings of SPIE 4124, High-Resolution Wavefront Control: Methods, Devices, and Applications II. 2000: 178-188.
    [48] 黄智蒙, 唐选, 刘仓理, 等. 变增益随机并行梯度下降算法及其在相干合成中的应用[J]. 中国激光, 2015, 42:0402004 doi: 10.3788/CJL201542.0402004

    Huang Zhimeng, Tang Xuan, Liu Cangli, et al. Stochastic parallel gradient descent algorithm with a variable gain coefficient and its application in coherent beam combining[J]. Chinese Journal of Lasers, 2015, 42: 0402004 doi: 10.3788/CJL201542.0402004
    [49] Wu Kenan, Sun Yang, Huai Ying, et al. Multi-perturbation stochastic parallel gradient descent method for wavefront correction[J]. Optics Express, 2015, 23(3): 2933-2944. doi: 10.1364/OE.23.002933
    [50] 罗成, 粟荣涛, 王小林, 等. 自适应并行梯度随机下降算法及其在相干合成中的应用[J]. 光学学报, 2014, 34:s101006

    Luo Cheng, Su Rongtao, Wang Xiaolin, et al. Adaptive stochastic parallel gradient descent algorithm and its application in coherent beam combining[J]. Acta Optica Sinica, 2014, 34: s101006
    [51] Nesterov Y. A method of solving a convex programming problem with convergence rate O(1/k2)[J]. Soviet Mathematics Doklady, 1983, 27(2): 372-376.
    [52] Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. The Journal of Machine Learning Research, 2011, 12: 2121-2159.
    [53] Hinton G, Srivastava N, Swersky K. Lecture 6e- Rmsprop: Divide the gradient by a running average of its recent magnitude[EB/OL]. Neural Networks for Machine Learning, 2012. http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf.
    [54] Zeiler M D. AdaDelta: an adaptive learning rate method[DB/OL]. arXiv preprint arXiv: 1212.5701, 2012.
    [55] Kingma D P, Ba J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. 2015.
    [56] Dozat T. Incorporating Nesterov momentum into Adam[C]//ICLR 2016 Workshop. 2016.
    [57] Borysenko O, Byshkin M. CoolMomentum: a method for stochastic optimization by Langevin dynamics with simulated annealing[J]. Scientific Reports, 2021, 11: 10705. doi: 10.1038/s41598-021-90144-3
    [58] 粟荣涛, 周朴, 王小林, 等. 32路光纤激光相干阵列的相位锁定[J]. 强激光与粒子束, 2014, 26:110101 doi: 10.11884/HPLPB201426.110101

    Su Rongtao, Zhou Pu, Wang Xiaolin, et al. Phase locking of a coherent array of 32 fiber lasers[J]. High Power Laser and Particle Beams, 2014, 26: 110101 doi: 10.11884/HPLPB201426.110101
    [59] Chang Hongxiang, Xi Jiachao, Su Rongtao, et al. Efficient phase-locking of 60 fiber lasers by stochastic parallel gradient descent algorithm[J]. Chinese Optics Letters, 2020, 18: 101403. doi: 10.3788/COL202018.101403
    [60] Chang Hongxiang, Chang Qi, Xi Jiachao, et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 2020, 8(12): 1943-1948. doi: 10.1364/PRJ.409788
    [61] Ma Pengfei, Chang Hongxiang, Ma Yanxing, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 2021, 140: 107016.
    [62] Fang Zhou, Xu Xiangxiang, Li Xin, et al. SPGD algorithm optimization based on Adam optimizer[C]//Proceedings of SPIE 11567, AOPC 2020: Optical Sensing and Imaging Technology. 2020: 115672S.
    [63] Hu Qintao, Zhen Liangli, Mao Yao, et al. Adaptive stochastic parallel gradient descent approach for efficient fiber coupling[J]. Optics Express, 2020, 28(9): 13141-13154. doi: 10.1364/OE.390762
    [64] Zhang Heng, Xu Li, Guo Yongfei, et al. Application of AdamSPGD algorithm to sensor-less adaptive optics in coherent free-space optical communication system[J]. Optics Express, 2022, 30(5): 7477-7490. doi: 10.1364/OE.451350
    [65] Zhao Hui, An Jing, Yu Mengjie, et al. Nesterov-accelerated adaptive momentum estimation-based wavefront distortion correction algorithm[J]. Applied Optics, 2021, 60(24): 7177-7185. doi: 10.1364/AO.428465
    [66] Xu Li, Wang Jianli, Yang Leqiang, et al. Design and performance analysis of NadamSPGD algorithm for sensor-less adaptive optics in coherent FSOC systems[J]. Photonics, 2022, 9: 77. doi: 10.3390/photonics9020077
    [67] Chen Jiayu, Liu Jinsheng, Han Long, et al. Theory of AdaDelSPGD algorithm in fiber laser-phased array multiplex communication systems[J]. Applied Sciences, 2022, 12: 3009. doi: 10.3390/app12063009
    [68] Zhang Zhiguang, Luo Yuxiang, Yang Huizhen, et al. CoolMomentum-SPGD algorithm for wavefront sensor-less adaptive optics systems[J]. Photonics, 2023, 10: 102. doi: 10.3390/photonics10020102
    [69] Song Jikun, Li Yuanyang, Che Dongbo, et al. Coherent beam combining based on the SPGD algorithm with a momentum term[J]. Optik, 2020, 202: 163650. doi: 10.1016/j.ijleo.2019.163650
    [70] Song Jikun, Li Yuanyang, Che Dongbo, et al. Numerical and experimental study on coherent beam combining using an improved stochastic parallel gradient descent algorithm[J]. Laser Physics, 2020, 30: 085102. doi: 10.1088/1555-6611/ab9118
    [71] Che Dongbo, Li Yuanyang, Wu Yunhan, et al. Theory of AdmSPGD algorithm in fiber laser coherent synthesis[J]. Optics Communications, 2021, 492: 126953. doi: 10.1016/j.optcom.2021.126953
    [72] Brignon A. Coherent laser beam combining[M]. Weinheim: John Wiley & Sons, 2013.
    [73] 韩荣磊, 孙建锋, 侯培培, 等. 大规模光学相控阵分级SPGD算法及优化研究[J]. 中国激光, 2023, 50:0206001 doi: 10.3788/CJL220690

    Han Ronglei, Sun Jianfeng, Hou Peipei, et al. Study on multi-stage SPGD algorithm of large scale optical phased array[J]. Chinese Journal of Lasers, 2023, 50: 0206001 doi: 10.3788/CJL220690
    [74] Shay T M. Theory of electronically phased coherent beam combination without a reference beam[J]. Optics Express, 2006, 14(25): 12188-12195. doi: 10.1364/OE.14.012188
    [75] 马阎星, 司磊, 周朴, 等. 多抖动法主振荡功率放大器相干合成技术[J]. 强激光与粒子束, 2009, 21(11):1639-1644

    Ma Yanxing, Si Lei, Zhou Pu, et al. Coherent beam combining of MOPA with multi-dithering technique[J]. High Power Laser and Particle Beams, 2009, 21(11): 1639-1644
    [76] Shay T M, Baker J T, Sanchez A D, et al. High-power phase locking of a fiber amplifier array[C]//Proceedings of SPIE 7195, Fiber Lasers VI: Technology, Systems, and Applications. 2009: 71951M.
    [77] Shay T M, Benham V, Baker J T, et al. First experimental demonstration of self-synchronous phase locking of an optical array[J]. Optics Express, 2006, 14(25): 12015-12021. doi: 10.1364/OE.14.012015
    [78] Pulford B. LOCSET phase locking: operation, diagnostics, and applications[D]. Albuquerque: The University of New Mexico, 2011.
    [79] 刘泽金, 王小林, 周朴, 等. 9路光纤激光相干合成实现1.56kW高功率输出[J]. 中国激光, 2011, 38:0705008

    Liu Zejin, Wang Xiaolin, Zhou Pu, et al. 9-channel fiber laser coherent synthesis with 1.56 kW high power output[J]. Chinese Journal of Lasers, 2011, 38: 0705008
    [80] Ma Yanxing, Wang Xiaolin, Leng Jinyong, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 2011, 36(6): 951-953. doi: 10.1364/OL.36.000951
    [81] Ma Yanxing, Zhou Pu, Wang Xiaolin, et al. Active phase locking of fiber amplifiers using sine–cosine single-frequency dithering technique[J]. Applied Optics, 2011, 50(19): 3330-3306. doi: 10.1364/AO.50.003330
    [82] Azarian A, Bourdon P, Lombard L, et al. Orthogonal coding methods for increasing the number of multiplexed channels in coherent beam combining[J]. Applied Optics, 2014, 53(8): 1493-1502. doi: 10.1364/AO.53.001493
    [83] Shay T M, Benham V, Baker J T, et al. Self-synchronous and self-referenced coherent beam combination for large optical arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 480-486. doi: 10.1109/JSTQE.2007.897173
    [84] Ahn H K, Kong H J. Cascaded multi-dithering theory for coherent beam combining of multiplexed beam elements[J]. Optics Express, 2015, 23(9): 12407-12413. doi: 10.1364/OE.23.012407
    [85] Ahn H K, Kong H J. Feasibility of cascaded multi-dithering technique for coherent addition of a large number of beam elements[J]. Applied Optics, 2016, 55(15): 4101-4108. doi: 10.1364/AO.55.004101
    [86] Ahn H K, Lee H, Kong H J. High power coherent beam combining setup using modified cascaded multi-dithering technique[J]. Current Optics and Photonics, 2018, 2(5): 431-435.
    [87] Kabeya D, Kermene V, Fabert M, et al. Active coherent combining of laser beam arrays by means of phase-intensity mapping in an optimization loop[J]. Optics Express, 2015, 23(24): 31059-31068. doi: 10.1364/OE.23.031059
    [88] Saucourt J, Armand P, Kermène V, et al. Random scattering and alternating projection optimization for active phase control of a laser beam array[J]. IEEE Photonics Journal, 2019, 11: 1503909.
    [89] Kabeya D, Kermène V, Fabert M, et al. Efficient phase-locking of 37 fiber amplifiers by phase-intensity mapping in an optimization loop[J]. Optics Express, 2017, 25(12): 13816-13821. doi: 10.1364/OE.25.013816
    [90] Du Qiang, Zhou Tong, Doolittle L R, et al. Deterministic stabilization of eight-way 2D diffractive beam combining using pattern recognition[J]. Optics Letters, 2019, 44(18): 4554-4557. doi: 10.1364/OL.44.004554
    [91] Du Qiang, Wang Dan, Zhou Tong, et al. Characterization and control of 81-beam diffractive coherent combining[C]//Advanced Solid State Lasers 2020. 2020: ATu4A. 5.
    [92] Du Qiang, Wang Dan, Zhou Tong, et al. 81-beam coherent combination using a programmable array generator[J]. Optics Express, 2021, 29(4): 5407-5418. doi: 10.1364/OE.416499
    [93] 吴函烁, 蒋敏, 周朴. 人工智能赋能激光: 现状、机遇与挑战[J]. 中国激光, 2023, 50:1101001 doi: 10.3788/CJL230692

    Wu Hanshuo, Jiang Min, Zhou Pu. Artificial intelligence-assisted laser science and technology: status, opportunities, and challenges[J]. Chinese Journal of Lasers, 2023, 50: 1101001 doi: 10.3788/CJL230692
    [94] 朱孝先, 高亦谈, 王一鸣, 等. 神经网络在超快光学中的应用[J]. 中国激光, 2023, 50:1101003 doi: 10.3788/CJL230572

    Zhu Xiaoxian, Gao Yitan, Wang Yiming, et al. Application of neural network in ultrafast optics[J]. Chinese Journal of Lasers, 2023, 50: 1101003 doi: 10.3788/CJL230572
    [95] 程涛, 郭思成, 王宁, 等. 基于机器学习的激光自适应光学技术研究进展[J]. 中国激光, 2023, 50:1101008 doi: 10.3788/CJL230522

    Cheng Tao, Guo Sicheng, Wang Ning, et al. Research progress of laser adaptive optics based on machine learning[J]. Chinese Journal of Lasers, 2023, 50: 1101008 doi: 10.3788/CJL230522
    [96] 高志强, 常琦, 刘昊宇, 等. 机器学习在光纤激光阵列相位调控中的研究进展与发展趋势[J]. 中国激光, 2023, 50:1101010 doi: 10.3788/CJL230656

    Gao Zhiqiang, Chang Qi, Liu Haoyu, et al. Research progress and development trend of machine learning in phase control of fiber laser arrays[J]. Chinese Journal of Lasers, 2023, 50: 1101010 doi: 10.3788/CJL230656
    [97] 吴修齐, 彭俊松, 张颖, 等. 智能锁模光纤激光器的原理与研究进展[J]. 中国激光, 2023, 50:1101006 doi: 10.3788/CJL230702

    Wu Xiuqi, Peng Junsong, Zhang Ying, et al. Principles and research advances of intelligent mode -locked fiber lasers[J]. Chinese Journal of Lasers, 2023, 50: 1101006 doi: 10.3788/CJL230702
    [98] Tünnermann H, Shirakawa A. Deep reinforcement learning for coherent beam combining applications[J]. Optics Express, 2019, 27(17): 24223-24230. doi: 10.1364/OE.27.024223
    [99] Hou Tianyue, An Yi, Chang Qi, et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems[J]. High Power Laser Science and Engineering, 2019, 7: e59. doi: 10.1017/hpl.2019.46
    [100] Shpakovych M, Maulion G, Kermene V, et al. Experimental phase control of a 100 laser beam array with quasi-reinforcement learning of a neural network in an error reduction loop[J]. Optics Express, 2021, 29(8): 12307-12318. doi: 10.1364/OE.419232
    [101] Du Qiang, Wang Dan, Zhou Tong, et al. Experimental beam combining stabilization using machine learning trained while phases drift[J]. Optics Express, 2022, 30(8): 12639-51263. doi: 10.1364/OE.450255
    [102] Mills B, Grant-Jacob J A, Praeger M, et al. Single step phase optimisation for coherent beam combination using deep learning[J]. Scientific Reports, 2022, 12: 5188. doi: 10.1038/s41598-022-09172-2
    [103] Sutton R S, Barto A G. Reinforcement learning: an introduction[M]. 2nd ed. Cambridge: MIT Press, 2018.
    [104] Lerman L, Poussier R, Bontempi G, et al. Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis)[C]//Proceedings of the 6th International Workshop on Constructive Side-Channel Analysis and Secure Design. 2015: 20-33.
    [105] Zimek A, Schubert E, Kriegel H P. A survey on unsupervised outlier detection in high-dimensional numerical data[J]. Statistical Analysis and Data Mining, 2012, 5(5): 363-387. doi: 10.1002/sam.11161
    [106] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236
    [107] Hessel M, Modayil J, van Hasselt H, et al. Rainbow: combining improvements in deep reinforcement learning[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. 2018: 393.
    [108] Silver D, Lever G, Heess N, et al. Deterministic policy gradient algorithms[C]//Proceedings of the 31st International Conference on International Conference on Machine Learning. 2014: 387-395.
    [109] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[C]//Proceedings of the 4th International Conference on Learning Representations. 2016.
    [110] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [111] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
    [112] Gerum R C, Erpenbeck A, Krauss P, et al. Sparsity through evolutionary pruning prevents neuronal networks from overfitting[J]. Neural Networks, 2020, 128: 305-312. doi: 10.1016/j.neunet.2020.05.007
    [113] Nader A, Azar D. Evolution of activation functions: an empirical investigation[J]. ACM Transactions on Evolutionary Learning and Optimization, 2021, 1: 8.
    [114] Goodfellow I, Bengio Y, Courville A. Deep learning[M]. Cambridge: MIT Press, 2016.
    [115] Hou Tianyue, An Yi, Chang Qi, et al. Deep-learning-based coherent fiber laser array system for power scaling and spatial light structuring[C]//Proceedings of SPIE 11981, Fiber Lasers XIX: Technology and Systems. 2022: 119810F.
    [116] Tünnermann H, Shirakawa A. Deep reinforcement learning for tiled aperture beam combining in a simulated environment[J]. Journal of Physics:Photonics, 2021, 3: 015004. doi: 10.1088/2515-7647/abcd83
    [117] Zhang Xi, Li Pingxue, Zhu Yunchen, et al. Coherent beam combination based on Q-learning algorithm[J]. Optics Communications, 2021, 490: 126930. doi: 10.1016/j.optcom.2021.126930
    [118] Shpakovych M, Maulion G, Boju A, et al. On-demand phase control of a 7-fiber amplifiers array with neural network and quasi-reinforcement learning[J]. Photonics, 2022, 9: 243. doi: 10.3390/photonics9040243
    [119] Hou Tianyue, An Yi, Chang Qi, et al. Deep-learning-assisted, two-stage phase control method for high-power mode-programmable orbital angular momentum beam generation[J]. Photonics Research, 2020, 8(5): 715-722. doi: 10.1364/PRJ.388551
    [120] Wang D, Du Q, Zhou T, et al. Stabilization of the 81-channel coherent beam combination using machine learning[J]. Optics Express, 2021, 29(4): 5694-5709. doi: 10.1364/OE.414985
    [121] Jia Haolong, Zuo Jing, Bao Qiliang, et al. A phase-error prediction method for coherent beam combining via convolutional neural network[J]. Optik, 2021, 246: 167827. doi: 10.1016/j.ijleo.2021.167827
    [122] Zuo Jing, Jia Haolong, Geng Chao, et al. Deep learning piston aberration control of fiber laser phased array by spiral phase modulation[J]. Journal of Lightwave Technology, 2022, 40(12): 3980-3991. doi: 10.1109/JLT.2022.3151628
    [123] Mills B, Grant-Jacob J A, Zervas M N. Optimisation of coherent beam combination using deep learning[C]//Proceedings of SPIE 12400, Fiber Lasers XX: Technology and Systems. 2023: 124000G.
    [124] Wang Dan, Du Qiang, Zhou Tong, et al. Machine learning pattern recognition algorithm with applications to coherent laser combination[J]. IEEE Journal of Quantum Electronics, 2022, 58: 6100309.
    [125] Feng X, Zhou H, Tao R, et al. Coherent beam combination through robust convolutional neural network (submitted)[J]. Micromachines, 2023.
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  30
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-01
  • 修回日期:  2024-03-11
  • 录用日期:  2024-03-11
  • 网络出版日期:  2024-03-25
  • 刊出日期:  2024-05-11

目录

    /

    返回文章
    返回