留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒子群优化算法设计超级陶粲工厂中的螺线管蛇装置

蓝杰钦 钟敏良 王栋梁 李炜煌 谭淦 曾德榕 高巍巍

蓝杰钦, 钟敏良, 王栋梁, 等. 基于粒子群优化算法设计超级陶粲工厂中的螺线管蛇装置[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230452
引用本文: 蓝杰钦, 钟敏良, 王栋梁, 等. 基于粒子群优化算法设计超级陶粲工厂中的螺线管蛇装置[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230452
Lan Jieqin, Zhong Minliang, Wang Dongliang, et al. Design of solenoid snake for a Super Tau-Charm Factory based on particle swarm optimization algorithm[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230452
Citation: Lan Jieqin, Zhong Minliang, Wang Dongliang, et al. Design of solenoid snake for a Super Tau-Charm Factory based on particle swarm optimization algorithm[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230452

基于粒子群优化算法设计超级陶粲工厂中的螺线管蛇装置

doi: 10.11884/HPLPB202436.230452
基金项目: 国家自然科学基金项目(12005039);大学生创新创业训练计划资助项目(202310388021;S202310388065)
详细信息
    作者简介:

    蓝杰钦,lanjq@mail.ustc.edu.cn

  • 中图分类号: TL594

Design of solenoid snake for a Super Tau-Charm Factory based on particle swarm optimization algorithm

  • 摘要: 在环形对撞机中等方位角间隔安装奇数个西伯利亚蛇是用来获得纵向极化束对撞的通常方案。根据超级陶粲工厂的特点,选取螺线管型西伯利亚蛇作为维持束流极化的装置。详细介绍了如何把粒子群优化算法与螺线管蛇去耦合和光学匹配问题相结合,对它进行快速优化设计,并对设计结果进行了展示。结果显示,基于粒子群算法的螺线管蛇优化设计有效且高效。
  • 图  1  对称性蛇装置元件布局示意图

    Figure  1.  Layout of symmetrical snake device

    图  2  粒子群算法优化设计蛇装置流程图

    Figure  2.  Flow chart of snake device design by particle swarm optimization

    图  3  粒子群分布随算法迭代进展的变化情况

    Figure  3.  Change of particle swarm distribution with the progress of algorithm iteration

    图  4  适应度随迭代次数的变化情况

    Figure  4.  Change of fitness with the number of iterations

    图  5  蛇装置内β函数在螺线管开启和关闭时的对比

    Figure  5.  Comparison of the betatron functions in the snake device when the solenoid is turned on and turned off

    图  6  稳定自旋方向(n轴)各分量沿环分布情况

    Figure  6.  Distribution of the components of the stable spin direction (n axis) along the ring

    图  7  ±I蛇和±L蛇装置的自旋透明特性对比

    Figure  7.  Comparison of spin transparency characteristics of ±I snake and±L snake devices

    图  8  蛇装置打开和关闭时的动力学孔径比较

    Figure  8.  Comparison of dynamic aperture when snake is turned on and off

    表  1  ±I螺线管蛇装置主要设计参数

    Table  1.   Main design parameters of ±I solenoid snake

    element solenoid ks /m−1 solenoid L/m Q1 K1/m−2 Q2 K1/m−2 Q3 K1/m−2 Q4 K1/m−2
    value when snake on 0.8722 1.8×2 2.38494523 −1.78215169 0.12879834 2.08811998
    value when snake off 0 1.8×2 2.24210204 −2.69629201 2.93748997 0.07303464
    下载: 导出CSV
  • [1] Raimondi P. Status on super-b effort[C]//3rd Workshop on Super Flavor Factory based on Linear Collider Technology (Super B III). 2006.
    [2] Zobov M, Alesini D, Biagini M E, et al. Test of “Crab-Waist” collisions at the DAΦNE Φ factory[J]. Physical Review Letters, 2010, 104: 174801. doi: 10.1103/PhysRevLett.104.174801
    [3] Anashin V V, Anisenkov A V, Aulchenko V M, et al. Super charm-tau factory conceptual design report part two (collider, injector)[R]. Novosibirsk, Russia: BINP SB RAS, 2018.
    [4] Biagini M E, Boni R, Boscolo M, et al. Tau/charm factory accelerator report[R]. Frascati: INFN, 2013.
    [5] Zhao Zhengguo. Introduction to future high intensity collider @ 2-7 GeV in China[C]//Workshop on Physics at Future High Intensity Collider @ 2-7GeV in China. 2015.
    [6] 黄光顺, 李澄, 李海波, 等. 2~7GeV高亮度正负电子对撞机的物理研究[J]. 科学通报, 2017, 62(12):1226-1232 doi: 10.1360/N972016-00398

    Huang Guangshun, Li Cheng, Li Haibo, et al. Physics on the high intensive electron position accelerator at 2~7 GeV[J]. Chinese Science Bulletin, 2017, 62(12): 1226-1232 doi: 10.1360/N972016-00398
    [7] Luo Qing, Xu Derong. Progress on preliminary conceptual study of HIEPA, a super Tau-Charm factory in China[C]//9th International Particle Accelerator Conference. 2018: 422-424.
    [8] Lee S Y. Spin dynamics and snakes in synchrotrons[M]. River Edge: World Scientific Press, 1997.
    [9] Mane S R, Shatunov Y M, Yokoya K. Spin-polarized charged particle beams in high-energy accelerators[J]. Reports on Progress in Physics, 2005, 68(9): 1997-2265. doi: 10.1088/0034-4885/68/9/R01
    [10] Derbenev Y S, Kondratenko A M, Serednyakov S I, et al. Radiative polarization: obtaining, control, using[J]. Particle Accelerators, 1978, 8: 115-126.
    [11] Mane S R, Shatunov Y M, Yokoya K. Siberian Snakes in high-energy accelerators[J]. Journal of Physics G: Nuclear and Particle Physics, 2005, 31(9): R151-R209. doi: 10.1088/0954-3899/31/9/R01
    [12] Kondratenko A M, Kovalenko A D, Kondratenko M A, et al. Comparison of solenoid, helix and dipole Siberian snake in the NICA collider[C]//Joint Institute for Nuclear Research XV Workshop on High Energy Spin Physics. 2013.
    [13] Thomas L H. The motion of the spinning electron[J]. Nature, 1926, 117: 514.
    [14] Bargmann V, Michel L, Telegdi V L. Precession of the polarization of particles moving in a homogeneous electromagnetic field[J]. Physical Review Letters, 1959, 2(10): 435-436. doi: 10.1103/PhysRevLett.2.435
    [15] Zhelents A A, Litvinenko V N. On the compensation of solenoid field effects by quadrupole lenses[R]. DESY L-TRANS-289, 1984: 1-8.
    [16] Iselin F C. The MAD program (methodical accelerator design) version 8.13 physical methods manual[M]. Geneva: Eurpean Organization for Nuclear Research, 1994.
    [17] Liujckx G, Van Amersfoort P W, Boer-Rookhuizen H, et al. Polarized electrons in the AmPS storage ring[C]//Proceedings of the 1997 Particle Accelerator Conference. 1997: 1063-1065.
    [18] Zwart T, Ivanov P, Shatunov Y, et al. A spin control system for the south hall ring at the bates linear accelerator center[C]//Proceedings of the 1995 Particle Accelerator Conference. 1995: 600-602.
    [19] Koop I A, Otboev A V, Shatunov P Y, et al. Spin transparent Siberian snake and spin rotator with solenoids[J]. AIP Conference Proceedings, 2007, 915(1): 948-954.
    [20] Kennedy J, Eberhart R C. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. 1995: 1942-1948.
    [21] Zhang Tong, Huang Xiaobiao. Numerical optimization of a low emittance lattice cell[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 923: 55-63.
    [22] Jiao Yi, Xu Gang. Optimizing the lattice design of a diffraction-limited storage ring with a rational combination of particle swarm and genetic algorithms[J]. Chinese Physics C, 2017, 41: 027001. doi: 10.1088/1674-1137/41/2/027001
    [23] Lan Jieqin, Luo Qing, Zhang Chun, et al. Design of beam optics for a super tau-charm factory[J]. Journal of Instrumentation, 2021, 16: T07001. doi: 10.1088/1748-0221/16/07/T07001
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  35
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 修回日期:  2024-04-08
  • 录用日期:  2024-04-16
  • 网络出版日期:  2024-06-27

目录

    /

    返回文章
    返回