留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稠密等离子体焦点二维模拟

欧海彬 段书超 王刚华 肖金水 何佳龙 谢龙 肖波 阚明先

欧海彬, 段书超, 王刚华, 等. 稠密等离子体焦点二维模拟[J]. 强激光与粒子束, 2024, 36: 075001. doi: 10.11884/HPLPB202436.240001
引用本文: 欧海彬, 段书超, 王刚华, 等. 稠密等离子体焦点二维模拟[J]. 强激光与粒子束, 2024, 36: 075001. doi: 10.11884/HPLPB202436.240001
Ou Haibin, Duan Shuchao, Wang Ganghua, et al. Two-dimensional simulation of dense plasma focus[J]. High Power Laser and Particle Beams, 2024, 36: 075001. doi: 10.11884/HPLPB202436.240001
Citation: Ou Haibin, Duan Shuchao, Wang Ganghua, et al. Two-dimensional simulation of dense plasma focus[J]. High Power Laser and Particle Beams, 2024, 36: 075001. doi: 10.11884/HPLPB202436.240001

稠密等离子体焦点二维模拟

doi: 10.11884/HPLPB202436.240001
基金项目: 国家自然科学基金项目(12075226、12205279)
详细信息
    作者简介:

    欧海彬,3038889531@qq.com

    通讯作者:

    段书超,s.duan@163.com

  • 中图分类号: O532;O411

Two-dimensional simulation of dense plasma focus

  • 摘要: 为了探究稠密等离子体焦点装置内等离子体层的运动规律以及相关设计参数的影响,利用自主开发的FOI程序对Mather型放电室结构下的等离子体层加速过程、焦点形成过程进行二维磁流体力学仿真,得到了与美国劳伦斯利弗莫尔国家实验室可见光实验图像相似的结果。同时,研究了装置的不同充气气压、电流幅值、阳极半径和阴阳极间隙对等离子体层轴向加速过程和箍缩效果的影响。计算结果表明,等离子体层会以一定的弧度沿径向压缩气体,这是引起腊肠不稳定现象的原因之一;等离子体层的轴向运动速度与装置充气压力的平方根成反比,与施加的电流成正比,与装置的阳极半径成反比;增大电流的同时需要延长装置阳极的长度,使箍缩发生在电流达到峰值的时刻;阴阳极间隙的大小对阳极附近等离子体层的轴向运动过程影响不大。
  • 图  1  计算域边界条件示意图

    Figure  1.  Schematic diagram of boundary conditions in computational domain

    图  2  DPF装置中的等离子体层运动过程

    Figure  2.  Plasma sheath motion process in DPF

    图  3  仿真得到的等离子体层在阳极顶部向轴心运动的过程,与LLNL拍摄到等离子体层的运动过程[11]的对比

    Figure  3.  Simulation of the axial motion of the plasma sheath at the top of the anode, compared with the motion of the plasma sheath captured by LLNL[11]

    图  4  充气压力对等离子体层轴向运动速度的影响

    Figure  4.  Effect of pressure on axial velocity of sheath

    图  5  不同电流幅值对等离子体层轴向运动速度、箍缩时刻和压缩比的影响

    Figure  5.  Influence of different current amplitudes on axial velocity of sheath, pinch time and compression ratio

    图  6  阳极半径对轴向速度的影响

    Figure  6.  Effect of anode radius on axial velocity of sheath

    图  7  阳极半径对箍缩时刻和压缩比的影响

    Figure  7.  Effect of anode radius on pinch time and compression ratio

    图  8  不同阴阳极间隙下等离子体层到达阳极顶部的时间

    Figure  8.  Time of plasma layer reaching the top of anode under different cathode-anode gaps

  • [1] 郭洪生, 杨高照, 张建华, 等. 高强度、短脉冲中子源研制及其应用技术研究[C]//第三届全国核技术与应用学术研讨会会议资料文集. 2012: 95

    Guo Hongsheng, Yang Gaozhao, Zhang Jianhua, et al. Research on the development and application technology of high intensity and short pulse neutron sources[C]//The Third National Academic Symposium on Nuclear Technology and Applications. 2012: 95
    [2] Mather J W. Formation of a high-density deuterium plasma focus[J]. Physics of Fluids, 1965, 8(2): 366-377. doi: 10.1063/1.1761231
    [3] Filippov N V, Filippova T I, Vinogradov V P. Dense high-temperature plasma in a non-cylindrical Z-pinch compression[J]. Nuclear Fusion, 1962, S2: 577-587.
    [4] 郭洪生, 李恩平, 何锡钧, 等. 影响DPF焦点装置中子稳定性的因素和改进措施[J]. 原子核物理评论, 2004, 21(3):214-217 doi: 10.3969/j.issn.1007-4627.2004.03.008

    Guo Hongsheng, Li Enping, He Xijun, et al. Method of stability of neutron yields on denser plasma focus[J]. Nuclear Physics Review, 2004, 21(3): 214-217 doi: 10.3969/j.issn.1007-4627.2004.03.008
    [5] 李名加, 范娟, 章法强, 等. 稠密等离子体焦点装置研制[J]. 强激光与粒子束, 2018, 30:115002 doi: 10.11884/HPLPB201830.180230

    Li Mingjia, Fan Juan, Zhang Faqiang, et al. Development of dense plasma focus device[J]. High Power Laser and Particle Beams, 2018, 30: 115002 doi: 10.11884/HPLPB201830.180230
    [6] Hart P J. Plasma acceleration with coaxial electrodes[J]. The Physics of Fluids, 1962, 5(1): 38-47. doi: 10.1063/1.1706489
    [7] Lee S. Plasma focus radiative model: Review of the Lee model code[J]. Journal of Fusion Energy, 2014, 33(4): 319-335. doi: 10.1007/s10894-014-9683-8
    [8] Ay Y, Abd Al-Halim M A, Bourham M A. Simulation of the plasma sheath dynamics in a spherical plasma focus[J]. The European Physical Journal D, 2015, 69: 205. doi: 10.1140/epjd/e2015-60063-2
    [9] Li Hui, Li Shengtai, Jungman G, et al. Dense plasma focus modeling[R]. Los Alamos: Los Alamos National Laboratory, 2017.
    [10] Jiang S, Higginson D P, Link A, et al. Effect of polarity on beam and plasma target formation in a dense plasma focus[J]. Physics of Plasmas, 2019, 26: 042702. doi: 10.1063/1.5048423
    [11] Schmidt A, Anaya E, Anderson M, et al. First experiments and radiographs on the MegaJOuLe Neutron Imaging Radiography (MJOLNIR) dense plasma focus[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3299-3306. doi: 10.1109/TPS.2021.3106313
    [12] Petkov E, Jackson S, Dasgupta A, et al. Characterization of electron beams from a dense plasma focus[J]. Bulletin of the American Physical Society, 2018, 63.
    [13] 段书超, 王刚华, 谢卫平, 等. FOI-PERFECT程序对电磁驱动高能量密度系统的三维弛豫磁流体力学模拟[J]. 强激光与粒子束, 2016, 28:045014 doi: 10.11884/HPLPB201628.125014

    Duan Shuchao, Wang Ganghua, Xie Weiping, et al. 3D relaxation MHD modeling with FOI-PERFECT code for electromagnetically driven HED systems[J]. High Power Laser and Particle Beams, 2016, 28: 045014 doi: 10.11884/HPLPB201628.125014
    [14] Duan Shuchao, Kan Mingxian, Xiao Bo, et al. Numerical modelling of inverse wire array Z-pinch magnetic reconnection[J]. AIP Advances, 2018, 8: 055018. doi: 10.1063/1.5029323
    [15] Duan Shuchao, Li Jing, Dan Jiakun, et al. A TVD implementation of constrained propagation for electromagnetic waves[J]. Advances and Applications in Fluid Mechanics, 2012, 12(2): 101-110.
    [16] Jin Shi, Xin Zhouping. The relaxation schemes for systems of conservation laws in arbitrary space dimensions[J]. Communications on Pure and Applied Mathematics, 1995, 48(3): 235-276. doi: 10.1002/cpa.3160480303
  • 加载中
图(8)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  62
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-03
  • 修回日期:  2024-03-19
  • 录用日期:  2024-03-19
  • 网络出版日期:  2024-04-15
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回