留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RTP晶体的271 cm−1拉曼频移五阶斯托克斯激光

王京 金鑫鑫 王严毅 王鸿雁 李志红 段延敏 朱海永

王京, 金鑫鑫, 王严毅, 等. 基于RTP晶体的271 cm−1拉曼频移五阶斯托克斯激光[J]. 强激光与粒子束, 2024, 36: 061006. doi: 10.11884/HPLPB202436.240004
引用本文: 王京, 金鑫鑫, 王严毅, 等. 基于RTP晶体的271 cm−1拉曼频移五阶斯托克斯激光[J]. 强激光与粒子束, 2024, 36: 061006. doi: 10.11884/HPLPB202436.240004
Wang Jing, Jin Xinxin, Wang Yanyi, et al. Utilizing RTP crystal to generate fifth-order Stokes laser emission with 271 cm−1 Raman shift[J]. High Power Laser and Particle Beams, 2024, 36: 061006. doi: 10.11884/HPLPB202436.240004
Citation: Wang Jing, Jin Xinxin, Wang Yanyi, et al. Utilizing RTP crystal to generate fifth-order Stokes laser emission with 271 cm−1 Raman shift[J]. High Power Laser and Particle Beams, 2024, 36: 061006. doi: 10.11884/HPLPB202436.240004

基于RTP晶体的271 cm−1拉曼频移五阶斯托克斯激光

doi: 10.11884/HPLPB202436.240004
基金项目: 国家自然科学基金项目(62075167、62275200、62205251);温州市基础性科研项目(G20220014);温州大学硕士研究生创新基金项目(3162023003067)
详细信息
    作者简介:

    王 京,18204019960@163.com

    通讯作者:

    金鑫鑫,xinxinjin@wzu.edu.cn

  • 中图分类号: TN248.1

Utilizing RTP crystal to generate fifth-order Stokes laser emission with 271 cm−1 Raman shift

  • 摘要: 报道了端面泵浦被动调Q激光驱动RbTiOPO4晶体拉曼实现271 cm−1频移高阶斯托克斯激光输出。采用Nd:YAG与Cr4+:YAG键合设计来降低腔内的损耗,并使激光系统更紧凑,从而提升腔内光子功率密度,有利于拉曼频移向高阶斯托克斯激光转换。设计不同频移的一阶斯托克斯激光对应在不同腔内振荡,利用与基频光模式匹配的差异来抑制687 cm−1频移的一阶斯托克斯激光,最终获得较纯的271 cm−1频移的五阶斯托克斯激光输出。在泵浦功率8.1 W下,获得了平均输出功率230 mW的1244 nm波长激光,对应的脉冲宽度和重复频率分别为2.9 ns和11.7 kHz。1 244 nm波段的激光正好与水中OH−1吸收峰对应,在地表植被和行星水含量的检测等领域有重要的应用。
  • 图  1  x轴切割RTP拉曼频移谱线图

    Figure  1.  Plot showing the nonpolarized Raman spectrum of x-cut RTP

    图  2  被动调Q RTP拉曼激光实验装置图

    Figure  2.  Experimental setup of passively Q-switched RTP Raman laser

    图  3  M1、M2和M3的透过率曲线

    Figure  3.  Transmittance of cavity mirror M1, M2 and M3 at different Stokes wavelengths

    图  4  不同注入泵浦功率下的RTP拉曼激光光谱

    Figure  4.  Output laser spectra of RTP Raman at different incident pump power

    图  5  拉曼激光输出功率随泵浦功率的变化关系

    Figure  5.  Average output power versus incident pump power for the Raman laser output

    图  6  斯托克斯激光脉冲宽度和重复频率随泵浦功率的变化曲线图

    Figure  6.  The pulse width and pulse repetition frequency (PRF) of Stokes light versus incident pump power

    图  7  在8.1 W泵浦功率下的斯托克斯激光的脉冲波形和脉冲序列

    Figure  7.  Temporal pulse profiles and pulse trains of Stokes light under an incident pump power of 8.1 W

    表  1  M1、M2和M3对不同斯托克斯激光的透过率

    Table  1.   Transmittances of M1, M2 and M3 for the different Stokes wavelengths

    wavelength/nm contributed Raman shifts transmittance/%
    M1 M2 M3
    1064 / 0.06 98.51 0.03
    1096 $ {\omega }_{\mathrm{R}2} $ 0.08 51.67 0.03
    1130 $ {2\omega }_{\mathrm{R}2} $ 0.44 0.52 0.05
    1149 $ {\omega }_{\mathrm{R}3} $ 1.75 0.15 0.03
    1165 $ {3\omega }_{\mathrm{R}2} $ 8.13 0.09 0.03
    1185 $ {\omega }_{\mathrm{R}2}+{\omega }_{\mathrm{R}3} $ 82.06 0.02 0.08
    1204 $ 4{\omega }_{\mathrm{R}2} $ 48.36 0.03 1.14
    1216 $ {\omega }_{\mathrm{R}1}+{\omega }_{\mathrm{R}2}+{\omega }_{\mathrm{R}3} $ 44.57 0.02 5.74
    1225 $ 2{\omega }_{\mathrm{R}2}+{\omega }_{\mathrm{R}3} $ 50.93 0.03 33.02
    1244 $ 5{\omega }_{\mathrm{R}2} $ 81.18 0.04 40.66
    1246 $ 2{\omega }_{\mathrm{R}3} $ 83.84 0.13 40.37
    note: $ {\omega }_{\mathrm{R}1}=213\;\mathrm{c}{\mathrm{m}}^{-1},\;{\omega }_{\mathrm{R}2}=271\;\mathrm{c}{\mathrm{m}}^{-1} $, $ \omega_{\mathrm{R}3}=687\; \mathrm{c}\mathrm{m}^{-1}。 $
    下载: 导出CSV
  • [1] Carvajal J J, Solé R, Gavaldà J, et al. Crystal growth of RbTiOPO4: Nb: a new nonlinear optical host for rare earth doping[J]. Crystal Growth & Design, 2001, 1(6): 479-484.
    [2] Oseledchik Y S, Pisarevsky A I, Prosvirnin A L, et al. Nonlinear optical properties of the flux grown RbTiOPO4 crystal[J]. Optical Materials, 1994, 3(4): 237-242. doi: 10.1016/0925-3467(94)90035-3
    [3] Yu Y J, Jin G Y, Wang C, et al. All-solid-state continuous-wave doubly resonant all-intracavity cyan laser at 500.8 nm by sum-frequency-mixing in double-crystal RTP generation[J]. Laser Physics Letters, 2009, 6(7): 513-516. doi: 10.1002/lapl.200910027
    [4] 毛雅晴, 段延敏, 王鸿雁, 等. 非临界相位匹配RTP晶体1.6 μm光参量振荡器[J]. 强激光与粒子束, 2014, 26:101004 doi: 10.11884/HPLPB201426.101004

    Mao Yaqing, Duan Yanmin, Wang Hongyan, et al. Optical parametric oscillator at 1.6 μm based on non-critical phase matching RTP crystal[J]. High Power Laser and Particle Beams, 2014, 26: 101004 doi: 10.11884/HPLPB201426.101004
    [5] 段延敏, 朱海永, 阮秀凯, 等. 单块KTA晶体级联光参量振荡2.6 μm激光器[J]. 强激光与粒子束, 2016, 28:109002 doi: 10.11884/HPLPB201628.160152

    Duan Yanmin, Zhu Haiyong, Ruan Xiukai, et al. Cascaded OPO based on single KTA crystal for 2.6 μm laser generation[J]. High Power Laser and Particle Beams, 2016, 28: 109002 doi: 10.11884/HPLPB201628.160152
    [6] Duan Yanmin, Zhu Haiyong, Ye Yanlin, et al. Efficient RTP-based OPO intracavity pumped by an acousto-optic Q-switched Nd: YVO4 laser[J]. Optics Letters, 2014, 39(5): 1314-1317. doi: 10.1364/OL.39.001314
    [7] Guillien Y, Ménaert B, Fève J P, et al. Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4[J]. Optical Materials, 2003, 22(2): 155-162. doi: 10.1016/S0925-3467(02)00359-2
    [8] 赵莉莉, 田俊涛, 李志永, 等. 电光调Q脉冲Ho: YLF激光器实验研究[J]. 强激光与粒子束, 2023, 35:031005 doi: 10.11884/HPLPB202335.220368

    Zhao Lili, Tian Juntao, Li Zhiyong, et al. Experimental research on electro-optical Q-switched pulse Ho: YLF laser[J]. High Power Laser and Particle Beams, 2023, 35: 031005 doi: 10.11884/HPLPB202335.220368
    [9] Jin Lin, Liu Pian, Huang Haitao, et al. Short pulse diode-pumped Tm: YAG slab laser electro-optically Q-switched by RbTiOPO4 crystal[J]. Optical Materials, 2016, 60: 350-354. doi: 10.1016/j.optmat.2016.08.011
    [10] Kugel G E, Brehat F, Wyncke B, et al. The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy[J]. Journal of Physics C:Solid State Physics, 1988, 21(32): 5565-5583. doi: 10.1088/0022-3719/21/32/011
    [11] Watson G H. Polarized Raman spectra of KTiOAsO4 and isomorphic nonlinear-optical crystals[J]. Journal of Raman Spectroscopy, 1991, 22(11): 705-713. doi: 10.1002/jrs.1250221116
    [12] Chang Y T, Huang Y P, Su Kuanwei, et al. Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission[J]. Optics Express, 2008, 16(11): 8286-8291. doi: 10.1364/OE.16.008286
    [13] Liu Zhaojun, Wang Qingpu, Zhang Xingyu, et al. Self-frequency-doubled KTiOAsO4 Raman laser emitting at 573 nm[J]. Optics Letters, 2009, 34(14): 2183-2185. doi: 10.1364/OL.34.002183
    [14] Zhu Haiyong, Shao Zhenhua, Wang Hongyan, et al. Multi-order Stokes output based on intra-cavity KTiOAsO4 Raman crystal[J]. Optics Express, 2014, 22(16): 19662-19667. doi: 10.1364/OE.22.019662
    [15] Duan Yanmin, Zhu Haiyong, Zhang Yaoju, et al. RbTiOPO4 cascaded Raman operation with multiple Raman frequency shifts derived by Q-switched Nd: YAlO3 laser[J]. Scientific Reports, 2016, 6: 33852. doi: 10.1038/srep33852
    [16] 张静, 段延敏, 张栋, 等. 声光调Q内腔式Nd: YAG/RTP级联拉曼激光特性[J]. 红外与激光工程, 2019, 48:0606006 doi: 10.3788/IRLA201948.0606006

    Zhang Jing, Duan Yanmin, Zhang Dong, et al. Acousto-optic Q-switched intracavity Nd: YAG/RTP cascaded Raman laser characteristics[J]. Infrared and Laser Engineering, 2019, 48: 0606006 doi: 10.3788/IRLA201948.0606006
    [17] Ye Pingping, Zhu Siqi, Li Zhen, et al. Passively Q-switched dual-wavelength green laser with an Yb: YAG/Cr 4+: YAG/YAG composite crystal[J]. Optics Express, 2017, 25(5): 5179-5185. doi: 10.1364/OE.25.005179
    [18] 郭俊宏, 段延敏, 张静, 等. Nd: YAG/Cr 4+: YAG/YAG键合晶体调Q激光输出特性研究[J]. 光子学报, 2018, 47:0214002 doi: 10.3788/gzxb20184702.0214002

    Guo Junhong, Duan Yanmin, Zhang Jing, et al. Investigation on passively Q-switch output characteristics of Nd: YAG/Cr 4+: YAG/YAG composite crystal laser[J]. Acta Photonica Sinica, 2018, 47: 0214002 doi: 10.3788/gzxb20184702.0214002
    [19] Henry L J, Shay T M, Moore G T, et al. Seeded Raman amplifier in a linear configuration for generating a 1240 nm laser: US 9502855B1[P]. 2016-11-22.
    [20] Wagner F R, Hildenbrand A, Natoli J Y, et al. Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy[J]. Optics Express, 2007, 15(21): 13849-13857. doi: 10.1364/OE.15.013849
    [21] Zhu Haiyong, Liu Jie, Qi Ziqin, et al. Self-frequency-mixing Raman laser based on RbTiOPO4[J]. Annalen der Physik, 2022, 534: 2200294. doi: 10.1002/andp.202200294
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  20
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-03
  • 修回日期:  2024-03-04
  • 录用日期:  2024-02-29
  • 网络出版日期:  2024-03-09
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回