Design of common aperture multi-beam shaped reflector antenna for satellite communications
-
摘要: 为了满足星载通信中多任务并行需求,提出了一种由格里高利型反射面和三个馈源喇叭天线组成的共口径多波束反射面天线,该天线能够产生两个固定轮廓波束和一个点波束。天线设计是采用射线追踪法确定点波束馈源位置以建立天线基础结构,并通过Zernike多项式和Cubic B-splines函数共同对主、副反射面进行赋形优化来完成。为了验证该方法的有效性,对口径为1.1 m的天线进行仿真设计,结果表明两个赋形轮廓波束在Ku收、发频段边缘增益(EOC gain)分别为27.7、28.0、28.0、28.2 dBi,固定点波束在服务区EOC gain不低于34 dBi并且在0~6.5°范围内的扫描波束增益不低于35 dBi。
-
关键词:
- 星载天线 /
- 赋形波束 /
- Zernike多项式 /
- Cubic B-splines函数 /
- 射线追踪法
Abstract: To meet the requirement of multiple tasks in parallel in spaceborne communication, this paper proposes a common aperture multi-beam reflector antenna composed of a Gregorian reflector and three feed-horn antennas, which can generate two contoured beams and one spot beam. The antenna is designed using ray tracing method to determine the optimal spot beam feed position for establishing the antenna infrastructure, and employing Zernike polynomials and cubic B-splines function to optimize the shape of both the main and secondary reflectors. To validate the efficacy of the method, simulation experiments were conducted on 1.1 m diameter antenna. The results demonstrate that the edge of coverage gain for both shaped contour beams in Ku receiving and transmitting bands are 27.7 dBi, 28.0 dBi, 28.0 dBi and 28.2 dBi, respectively. The spot beam exhibits a minimum service EOC gain of not less than 34 dBi, while the scanning beam gain within the range of 0 to 6.5° is not less than 35 dBi.-
Key words:
- space-borne antenna /
- shaped beam /
- Zernike polynomials /
- cubic B-splines function /
- ray tracing method
-
表 1 天线设计参数
Table 1. Design parameters for antenna
Dm/m F/m Dsx/m f/m feed1 position/m feed2 position/m feed3 position/m SR eccentricity 1.1 0.88 0.278 0.15 (−0.13,0,0.076) (0.035,0.055,0.92) (0.045,−0.043,0.84) 0.25 表 2 任务指标
Table 2. Task metrics
item EOC gain/dBi XPD/dB shaped beam 1 27.5 29 shaped beam 2 28.0 25 spot beam 34.0 30 EOC gain: edge-of-coverage gain; XPD: cross-polarization discrimination 表 3 赋形波束数据
Table 3. Date of shaped beam
shaped data transmitted form frequency/GHz linear polarization EOC gain/dBi XPD/dB EOC gain/dBi[10] shaped beam 2 TX 12.50 H 28.2 25 27.3 RX 14.25 V 28.0 25 27.1 shaped beam 1 TX 12.50 V 28.0 29 26.1 RX 14.25 H 27.7 29 26.1 H: horizontal ; V: vertical ; TX: transmit ; RX: receive 表 4 赋形波束GAP
Table 4. GAP of shaped beam
shaped data transmitted form Dλ GAP shaped beam 2 TX 45.83 6706 RX 52.25 6404 shaped beam 1 TX 45.83 9149 RX 52.25 8538 表 5 点波束增益
Table 5. Gain of spot beam
spot beam transmitted form gain/dBi XPD/dB #1 TX 34.58 30 RX 34.78 30 #2 TX 35.04 32 RX 35.27 31 #3 TX 35.38 33 RX 35.77 33 表 6 点波束增益
Table 6. Gain of spot beam
$ \Delta x/\mathrm{m}\mathrm{m} $ $ \Delta y/\mathrm{m}\mathrm{m} $ $ \theta$/(°) gain/dBi $ \Delta x/\mathrm{m}\mathrm{m} $ $ \Delta y/\mathrm{m}\mathrm{m} $ $ \theta $/(°) gain/dBi 40 0 −2.1 35.74 0 −40 −2.2 35.35 80 0 −4.3 35.67 0 −80 −4.3 35.27 120 0 −6.4 35.32 0 −120 −6.5 35.04 140 0 −7.4 35.07 0 −140 −7.6 34.80 -
[1] Rao S, Hsu C C, Wang J. Common aperture satellite antenna system for multiple contoured beams and multiple spot beams[C]//2010 IEEE Antennas and Propagation Society International Symposium. 2010: 1-4. [2] Pinsard B, Renaud D, Diez H. New surface expansion for fast PO synthesis of shaped reflector antennas[C]//Tenth International Conference on Antennas and Propagation. 1997: 25-29. [3] 李建军, 尹鹏飞, 赵现斌. 一种星载通信混合反射面天线的设计方法[J]. 电子与信息学报, 2020, 42(11):2621-2628 doi: 10.11999/JEIT190564Li Jianjun, Yin Pengfei, Zhao Xianbin. A synthesis method of hybrid reflector antenna for satellite communications[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2621-2628 doi: 10.11999/JEIT190564 [4] 潘昱旭, 王梓丞, 郭庆功. K波段平顶波束赋形反射面天线设计[J]. 四川大学学报(自然科学版), 2021, 58:043004Pan Yuxu, Wang Zicheng, GUO Qinggong. Design of a K-band flat-top contoured-beam reflector antenna[J]. Journal of Sichuan University (Natural Science Edition), 2021, 58: 043004 [5] Dastranj A, Abiri H, Mallahzadeh A. Design of a broadband cosecant squared pattern reflector antenna using IWO algorithm[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(7): 3895-3900. doi: 10.1109/TAP.2013.2254439 [6] Mahajan M, Jyoti R, Sood K, et al. A method of generating simultaneous contoured and pencil beams from single shaped reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 5297-5301. doi: 10.1109/TAP.2013.2271492 [7] Lee J J, Parad L I, Chu R S. A shaped offset-fed dual-reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 1979, 27(2): 165-171. doi: 10.1109/TAP.1979.1142056 [8] 李建军, 尹鹏飞, 赵现斌, 等. 双馈源双偏置结构星载通信多波束天线[J]. 微波学报, 2018, 34(4):10-15Li Jianjun, Yin Pengfei, Zhao Xianbin, et al. Multi-beam antenna with double feeds and dual-offset configuration for space-borne communication[J]. Journal of Microwaves, 2018, 34(4): 10-15 [9] Wan Jixiang, Yan Tao, Wang Feng. A hybrid reflector antenna for two contoured beams with different shapes[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(7): 1171-1175. doi: 10.1109/LAWP.2018.2836927 [10] Granet C. Designing classical offset Cassegrain or Gregorian dual-reflector antennas from combinations of prescribed geometric parameters[J]. IEEE Antennas and Propagation Magazine, 2002, 44(3): 114-123. doi: 10.1109/MAP.2002.1028736 [11] Li Tiansong, Shi Xinling, Chen Jianhua, et al. The global double cubic B-spline surface interpolation based on particle swarm optimization[C]//2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC). 2013: 1-5. [12] Piegl L, Tiller W. The NURBS book [M]. 2nd ed. Berlin: Springer, 1997. [13] Gupta R C, Sagi S K, Raja K P, et al. Shaped prime-focus reflector antenna for satellite communication[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1945-1948. doi: 10.1109/LAWP.2017.2689800 [14] Krichevsky V, DiFonzo D. Optimum beam scanning in offset single and dual reflector antennas[J]. IEEE Transactions on Antennas and Propagation, 1985, 33(2): 179-188. doi: 10.1109/TAP.1985.1143547 [15] Rao S, Shafai L, Sharma S. Handbook of reflector antennas and feed systems Volume I: theory and design of reflectors[M]. Boston: Artech House, 2013. [16] Rao S, Shafai L, Sharma S. Handbook of reflector antennas and feed systems volume III: applications of reflectors[M]. Boston: Artech House, 2013. [17] Rao S K. Advanced antenna technologies for satellite communications payloads[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1205-1217. doi: 10.1109/TAP.2015.2391283