留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单离子束-微流控细胞高通量辐照技术

詹福如

詹福如. 单离子束-微流控细胞高通量辐照技术[J]. 强激光与粒子束, 2024, 36: 094004. doi: 10.11884/HPLPB202436.240023
引用本文: 詹福如. 单离子束-微流控细胞高通量辐照技术[J]. 强激光与粒子束, 2024, 36: 094004. doi: 10.11884/HPLPB202436.240023
Zhan Furu. High throughput of cell irradiation with microfluidics in single ion microbeam system[J]. High Power Laser and Particle Beams, 2024, 36: 094004. doi: 10.11884/HPLPB202436.240023
Citation: Zhan Furu. High throughput of cell irradiation with microfluidics in single ion microbeam system[J]. High Power Laser and Particle Beams, 2024, 36: 094004. doi: 10.11884/HPLPB202436.240023

单离子束-微流控细胞高通量辐照技术

doi: 10.11884/HPLPB202436.240023
基金项目: 中国科学院科研装置研制项目(YZ201525)
详细信息
    作者简介:

    詹福如,zfr@ipp.ac.cn

  • 中图分类号: Q337;O657

High throughput of cell irradiation with microfluidics in single ion microbeam system

  • 摘要: 辐照通量是指单位时间里离子辐照的细胞数量,是单离子束细胞辐照系统的重要性能指标。为提高单离子定位辐照通量,将微流控技术应用于单离子束细胞辐照系统,实现了单离子-单细胞精确定位自动辐照技术。微流控芯片上建立细胞储液池、O2和CO2注入通道、恒温加热、pH检测、细胞检测等功能机构。细胞微流受驱动在通道中保持运动,离子经微流控芯片辐照点射入微通道,对动态细胞进行辐照。基于CAS-LIBB装置,建立离子定位微流细胞的计算模型,研究离子精确瞄准微流细胞的基本方法和规律,获得微流细胞速度、最大辐照通量、辐照剂量、细胞间距等多个参量之间的相互约束关系,成为系统运行的理论指导。提出“即测即打”运行模式,以加快辐照速度,提高离子定位准确性。结果表明,细胞速度和辐照通量均存在上限值,提高微流细胞数密度和离子发射密度,是提高辐照通量的可选方法。采用微流控技术后,辐照通量达到10000细胞/h,相比之前提高10倍以上。计算数据和实验结果基本吻合。
  • 图  1  单离子束微流控芯片辐照系统

    Figure  1.  Microfluidic chip with single ion microbeam

    图  2  微流控芯片辐照点设计和制作

    Figure  2.  irradiation point on the chip

    图  3  离子定位辐照细胞原理

    Figure  3.  Sketch of the ion aiming at the cells

    图  4  两个离子相继辐照一个运动细胞,准直器固定不动,细胞上两击中点的间距须小于aa为细胞尺度, b为束斑直径

    Figure  4.  Two ions irradiate a cell successively, separation of the two hit points on cell is a, collimator is fixed, b is the beam spot diameter

    图  5  微流通道中单列细胞数密度

    Figure  5.  Number density of the single-row cells in the microfluidic channel

    表  1  设计实例数据

    Table  1.   Data of a design example

    k d/mm n/s−1 m/μL−1 vm/(mm·s−1) Qmax /h−1 Q/h−1 relative error/%
    2 1.0 1000 2500 8.5 30600
    2 1.0 2000 2500 17.0 61200 invalid
    5 1.0 1000 2500 3.4 12240 11861 −3.1
    5 1.0 2000 2500 6.8 24480 23427 −4.3
    10 1.0 1000 2500 1.7 6120 5954 −2.7
    10 1.0 2000 2500 3.4 12240 11775 −3.8
    下载: 导出CSV
  • [1] Hu Zhiwen, Chen Lianyun, Li Jun, et al. High-localized cell irradiation at the CAS-LIBB single-particle microbeam[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 244(2): 462-466.
    [2] 詹福如, 许明亮, 许永建, 等. 单离子束技术概述[J]. 强激光与粒子束, 2007, 19(11):1913-1917

    Zhan Furu, Xu Mingliang, Xu Yongjian, et al. Review of single ion microbeam technology[J]. High Power Laser and Particle Beams, 2007, 19(11): 1913-1917
    [3] Randers-Pehrson G, Geard C R, Johnson G, et al. The Columbia University single-ion microbeam[J]. Radiation Research, 2001, 156(2): 210-214. doi: 10.1667/0033-7587(2001)156[0210:TCUSIM]2.0.CO;2
    [4] Shafirkin A V, Grigoriev Y G, Ushakov I B. More precise determination of the relative biological effectiveness of fast neutrons and accelerated multi-charged ions at low doses for estimation of the risk of injury of brain and lens neurons[J]. Human Physiology, 2020, 46(7): 722-730. doi: 10.1134/S0362119720070130
    [5] Almahwasi A. Low dose hyper-radiosensitivity in normal human cells[J]. Radiation Physics and Chemistry, 2023, 202: 110523. doi: 10.1016/j.radphyschem.2022.110523
    [6] Joshi G S, Joiner M C, Tucker J D. Cytogenetic characterization of low-dose hyper-radiosensitivity in Cobalt-60 irradiated human lymphoblastoid cells[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 770: 69-78. doi: 10.1016/j.mrfmmm.2014.09.006
    [7] Brenner D J, Elliston C D. The potential impact of bystander effects on radiation risks in a mars mission[J]. Radiation Research, 2001, 156(5): 612-617. doi: 10.1667/0033-7587(2001)156[0612:TPIOBE]2.0.CO;2
    [8] Abdelhakm L O, Kandil E I, Mansour S Z, et al. Chrysin encapsulated copper nanoparticles with low dose of gamma radiation elicit tumor cell death through p38 MAPK/NF-κB pathways[J]. Biological Trace Element Research, 2023, 201(11): 5278-5297. doi: 10.1007/s12011-023-03596-1
    [9] Okada M, Okabe A, Uchihori Y, et al. Single extreme low dose/low dose rate irradiation causes alteration in lifespan and genome instability in primary human cells[J]. British Journal of Cancer, 2007, 96(11): 1707-1710. doi: 10.1038/sj.bjc.6603775
    [10] Zhou Hongning, Randers-Pehrson G, Geard C R, et al. Interaction between radiation-induced adaptive response and bystander mutagenesis in mammalian cells[J]. Radiation Research, 2003, 160(5): 512-516. doi: 10.1667/RR3083
    [11] Guo Xiaoying, Sun Jie, Bian Po, et al. Radiation-induced bystander signaling from somatic cells to germ cells in Caenorhabditis elegans[J]. Radiation Research, 2013, 180(3): 268-275. doi: 10.1667/RR3218.1
    [12] Yang Gen, Wu Lijun, Chen Lianyun, et al. Targeted irradiation of shoot apical meristem of Arabidopsis embryos induces long-distance bystander/abscopal effects[J]. Radiation Research, 2007, 167(3): 298-305. doi: 10.1667/RR0710.1
    [13] Li Lu, Wang Lu, Prise K M, et al. Akt/mTOR mediated induction of bystander effect signaling in a nucleus independent manner in irradiated human lung adenocarcinoma epithelial cells[J]. Oncotarget, 2017, 8(11): 18010-18020. doi: 10.18632/oncotarget.14931
    [14] Hu Beiyu, Xu Bingxue, Yun Juanli, et al. High-throughput single-cell cultivation reveals the underexplored rare biosphere in deep-sea sediments along the Southwest Indian Ridge[J]. Lab on a Chip, 2020, 20(2): 363-372. doi: 10.1039/C9LC00761J
    [15] 姚波, 何巧红, 杜文斌, 等. 微流控高通量试样引入技术的研究进展[J]. 色谱, 2009, 27(5):662-666 doi: 10.3321/j.issn:1000-8713.2009.05.018

    Yao Bo, He Qiaohong, Du Wenbin, et al. Developments of high-throughput microfluidic sample introduction techniques[J]. Chinese Journal of Chromatography, 2009, 27(5): 662-666 doi: 10.3321/j.issn:1000-8713.2009.05.018
    [16] Simchi M, Riordon J, Wang Yihe, et al. High-throughput sperm DNA analysis at the single-cell and population levels[J]. Analyst, 2023, 148(16): 3748-3757. doi: 10.1039/D3AN00564J
    [17] Buonanno M, Garty G, Grad M, et al. Microbeam irradiation of C. elegans nematode in microfluidic channels[J]. Radiation and Environmental Biophysics, 2013, 52(4): 531-537. doi: 10.1007/s00411-013-0485-6
    [18] Chen Dongwei, Nie Mengyue, Tang Wei, et al. Whole lifecycle observation of single-spore germinated Streptomyces using a nanogap-stabilized microfluidic chip[J]. mLife, 2022, 1(3): 341-349. doi: 10.1002/mlf2.12039
    [19] Zhou Yang, Yu Zhibin, Wu Man, et al. Single-cell sorting using integrated pneumatic valve droplet microfluidic chip[J]. Talanta, 2023, 253: 124044. doi: 10.1016/j.talanta.2022.124044
    [20] Gebreyesus S T, Muneer G, Huang C C, et al. Recent advances in microfluidics for single-cell functional proteomics[J]. Lab on a Chip, 2023, 23(7): 1726-1751. doi: 10.1039/D2LC01096H
    [21] Roper M G. Cellular analysis using microfluidics[J]. Analytical Chemistry, 2016, 88(1): 381-394. doi: 10.1021/acs.analchem.5b04532
    [22] Tkaczyk A H, Tkaczyk E R, Norris T B, et al. Microfluidic droplet consistency monitoring and encapsulated cell detection via laser excitation[J]. Journal of Mechanics in Medicine and Biology, 2011, 11(1): 1-14. doi: 10.1142/S0219519410003617
    [23] Larson A P, Ahlberg H, Folestad S. Semiconductor laser-induced fluorescence detection in picoliter volume flow cells[J]. Applied Optics, 1993, 32(6): 794-805. doi: 10.1364/AO.32.000794
    [24] Zhan Furu, Qi Xuehong, Xu Mingliang, et al. Improvement of the energy stability of the single ion microbeam[J]. Plasma Science and Technology, 2008, 10(2): 250-253. doi: 10.1088/1009-0630/10/2/23
    [25] Xu Mingliang, Xu Yongjian, Zhan Furu, et al. Analysis and optimization of stability of CAS-LIBB single ion microbeam[J]. Plasma Science and Technology, 2008, 10(5): 651-654. doi: 10.1088/1009-0630/10/5/24
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  53
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 修回日期:  2024-07-23
  • 录用日期:  2024-07-23
  • 网络出版日期:  2024-08-05
  • 刊出日期:  2024-08-16

目录

    /

    返回文章
    返回