留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核数据引起的研究堆有效增殖因子计算不确定度量化

孙静宇 马纪敏

孙静宇, 马纪敏. 核数据引起的研究堆有效增殖因子计算不确定度量化[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240024
引用本文: 孙静宇, 马纪敏. 核数据引起的研究堆有效增殖因子计算不确定度量化[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240024
Sun Jingyu, Ma Jimin. Quantification of calculated effective multiplication factor uncertainty caused by nuclear data in research reactor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240024
Citation: Sun Jingyu, Ma Jimin. Quantification of calculated effective multiplication factor uncertainty caused by nuclear data in research reactor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240024

核数据引起的研究堆有效增殖因子计算不确定度量化

doi: 10.11884/HPLPB202436.240024
基金项目: 国家磁约束核聚变能发展研究专项资助(2022YFE03160003)
详细信息
    作者简介:

    孙静宇,2879408244@qq.com

    通讯作者:

    马纪敏,majm03@yeah.net

  • 中图分类号: TL334

Quantification of calculated effective multiplication factor uncertainty caused by nuclear data in research reactor

  • 摘要: 为了深入研究核数据不确定度对JRR-3M研究堆有效增殖因子(keff)计算的影响,建立了一套基于蒙特卡罗法的核数据不确定度量化流程。具体方法为:使用核数据扰动软件SANDY扰动目标核素的重要反应道生成扰动文件,再通过核数据加工软件NJOY对扰动文件进行处理,最终利用核反应堆物理模拟软件OpenMC进行蒙特卡罗模拟。针对JRR-3M研究堆的控制棒全插、反应堆临界、控制棒全拔三种运行工况,对多个关键核素(如235U、238U、Hf等)的核数据不确定度给有效增殖因子keff计算带来的影响进行了详细分析。研究结果表明,177Hf、235U、1H、27Al的核数据不确定度对JRR-3M有效增殖因子具有显著影响。临界、控制棒全插和控制棒全提这3种工况下,核数据不确定引起的keff总不确定度分别为660.8×10−5、588.5×10−5、708.4×10−5。在各个工况下,235U的次级粒子能量分布的影响都是最大的。研究发现,对以铪为主要组成材料的控制棒内,只有177Hf的核数据不确定度起主要影响。
  • 图  1  抽样法基本流程

    Figure  1.  Basic process of sampling method

    图  2  具体流程

    Figure  2.  Specific process

    图  3  堆芯结构

    Figure  3.  Core structure

    图  4  三种工况下的堆芯示意图

    Figure  4.  The core cross-sections under three operating conditions

    图  5  扰动文件数收敛图像

    Figure  5.  Disturbance file number convergence image

    图  6  TENDL-2021库中铪的吸收截面对比

    Figure  6.  Comparison of absorption cross-sections of hafnium in TENDL-2021 library

    表  1  钠的单群弹性散射截面扰动结果对比

    Table  1.   Comparison of Disturbance Results of Single Group Elastic Scattering Cross Section of Sodium

    Fiorito L[3]MacFarlane[10]Results of this article
    MeanStdev(%)MeanStdev(%)MeanStdev(%)
    ENDF/B-VII.17.942.447.942.467.952.52
    JEFF-3.27.892.107.892.097.902.15
    下载: 导出CSV

    表  2  JRR-3M三种工况下各核素对keff的不确定度贡献

    Table  2.   Contribution of uncertainty of each nuclide under three working conditions

    nuclidekeffuncertainty caused by
    fuel nuclides (pcm)
    uncertainty caused by
    coolant and moderator (pcm)
    uncertainty caused by
    control rod material (pcm)
    total
    uncertainty
    (pcm)
    27Al238U235Utotal1H2H16O9Betotal174Hf176Hf177Hf178Hf179Hf180Hftotal
    criticality1.00457±0.00008309.567.6417523.7346.641.6107.159.9370.015.015.1154.715.422.917.3156.5660.8
    control rod
    fully inserted
    1.00457±0.00008247.557.5309.8400.7250.046.196.460.2278.513.917.3324.717.640.120.9329.1588.5
    control rod
    fully lifted
    1.00457±0.00008366.783.2454.5589.9367.444.3100.475.0390.713.213.813.813.514.014.333.7708.4
    下载: 导出CSV

    表  3  各工况下各反应道的不确定度量化结果

    Table  3.   Quantitative results of uncertainty for each reaction channel under different operating conditions

    nuclide reaction channel criticality Control rod fully inserted Control rod fully lifted
    uncertainty (pcm)
    235U Capture 181.5 154.4 237.0
    Fission 115.9 99.5 132.4
    Inelastic scattering 8.3 7.2 8.9
    Elastic scattering 8.9 8.7 8.2
    Prompt multiplicity 131.6 116.8 163.9
    Energy distribution 331.8 220.1 325.4
    238U Capture 51.9 46.2 68.8
    Fission 8.3 7.8 8.2
    Inelastic scattering 36.9 27.1 39.7
    Elastic scattering 17 15.0 20.0
    Prompt multiplicity 10.1 9.6 9.4
    Energy distribution 7.8 8.0 8.0
    27Al Capture 168.3 143.6 219.0
    Elastic scattering 130.9 98.3 127.1
    Inelastic scattering 224.3 176.0 265.3
    9Be Elastic scattering 42.5 42.8 52.8
    Inelastic scattering 42.2 42.3 53.2
    16O Elastic scattering 106.7 96.1 100.0
    Capture 8.8 7.6 8.8
    1H Elastic scattering 188.2 136.6 184.3
    Capture 291.1 209.4 317.8
    2H Elastic scattering 40.6 45.2 43.6
    Capture 9.2 9.0 7.9
    174Hf Capture 8.8 8.3 7.6
    Elastic scattering 8.2 7.5 7.7
    Inelastic scattering 8.9 8.2 7.6
    176Hf Capture 9.5 13.3 8.0
    Elastic scattering 8.4 7.8 8.0
    Inelastic scattering 8.2 7.8 7.8
    177Hf Capture 154.0 323.9 8.3
    Elastic scattering 12.1 21.6 7.7
    Inelastic scattering 8.4 7.7 7.9
    178Hf Capture 9.2 13.4 7.6
    Elastic scattering 8.9 8.1 8.0
    Inelastic scattering 8.6 8.0 7.8
    179Hf Capture 19.6 38.3 8.3
    Elastic scattering 8.4 9.2 8.0
    Inelastic scattering 8.3 7.4 7.9
    180Hf Capture 12.3 17.0 8.3
    Elastic scattering 8.9 8.8 8.4
    Inelastic scattering 8.3 8.4 8.1
    下载: 导出CSV
  • [1] Zhu Ting, Vasiliev A, Ferroukhi H, et al. Testing the sampling-based NUSS-RF tool for the nuclear data–related global sensitivity analysis with Monte Carlo neutronics calculations[J]. Nuclear Science and Engineering, 2016, 184(1): 69-83. doi: 10.13182/NSE14-142
    [2] 万承辉, 曹良志, 吴宏春, 等. 基于抽样方法的特征值不确定度分析[J]. 原子能科学技术, 2015, 49(11):1954-1960 doi: 10.7538/yzk.2015.49.11.1954

    Wan Chenghui, Cao Liangzhi, Wu Hongchun, et al. Eigenvalue uncertainty analysis based on statistical sampling method[J]. Atomic Energy Science and Technology, 2015, 49(11): 1954-1960 doi: 10.7538/yzk.2015.49.11.1954
    [3] Fiorito L, Žerovnik G, Stankovskiy A, et al. Nuclear data uncertainty propagation to integral responses using SANDY[J]. Annals of Nuclear Energy, 2017, 101: 359-366. doi: 10.1016/j.anucene.2016.11.026
    [4] Griseri M, Fiorito L, Stankovskiy A, et al. Nuclear data uncertainty propagation on a sodium fast reactor[J]. Nuclear Engineering and Design, 2017, 324: 122-130. doi: 10.1016/j.nucengdes.2017.08.018
    [5] 强胜龙, 尹强, 芦韡, 等. 秦山二期堆芯临界计算中核数据的敏感性分析[J]. 强激光与粒子束, 2017, 29:036004 doi: 10.11884/HPLPB201729.160433

    Qiang Shenglong, Yin Qiang, Lu Wei, et al. Sensitivity analysis of nuclear data in core critical calculation of Qinshan Ⅱ[J]. High Power Laser and Particle Beams, 2017, 29: 036004 doi: 10.11884/HPLPB201729.160433
    [6] Iwamoto H, Stankovskiy A, Fiorito L, et al. Monte Carlo uncertainty quantification of the effective delayed neutron fraction[J]. Journal of Nuclear Science and Technology, 2018, 55(5): 539-547. doi: 10.1080/00223131.2017.1416691
    [7] Park J H, Pereslavtsev P, Konobeev A, et al. Statistical analysis of tritium breeding ratio deviations in the DEMO due to nuclear data uncertainties[J]. Applied Sciences, 2021, 11: 5234. doi: 10.3390/app11115234
    [8] 胡泽华, 叶涛, 刘雄国, 等. 抽样法与灵敏度法keff不确定度量化[J]. 物理学报, 2017, 66:012801 doi: 10.7498/aps.66.012801

    Hu Zehua, Ye Tao, Liu Xiongguo, et al. Uncertainty quantification in the calculation of keff using sensitity and stochastic sampling method[J]. Acta Physica Sinica, 2017, 66: 012801 doi: 10.7498/aps.66.012801
    [9] 吴屈, 余健开, 李万林, 等. 基于不同ENDF/B的ACE格式库参数制作与初步检验(英文)[J]. 强激光与粒子束, 2017, 29:026004 doi: 10.11884/HPLPB201729.160332

    Wu Qu, Yu Jiankai, Li Wanlin, et al. Parameter making and preliminary test of ACE format libraries based on different ENDF/B[J]. High Power Laser and Particle Beams, 2017, 29: 026004 doi: 10.11884/HPLPB201729.160332
    [10] MacFarlane R E, Muir D W. The NJOY nuclear data processing system Version 91[R]. Los Alamos: Los Alamos National Lab, 1994.
    [11] Ma Jimin, Wang Guanbo, Yuan Shu, et al. An improved assembly homogenization approach for plate-type research reactor[J]. Annals of Nuclear Energy, 2015, 85: 1003-1013. doi: 10.1016/j.anucene.2015.07.018
    [12] 戴涛, 黄洪文, 马纪敏. 基于RELAP5的池式研究堆自然循环瞬态计算[J]. 强激光与粒子束, 2018, 30:086001 doi: 10.11884/HPLPB201830.180009

    Dai Tao, Huang Hongwen, Ma Jimin. Transient calculation of natural circulation for pool-type research reactor[J]. High Power Laser and Particle Beams, 2018, 30: 086001) doi: 10.11884/HPLPB201830.180009
    [13] 胡继峰, 王小鹤, 李文江, 等. 熔盐实验堆核数据引起反应性参数不确定度分析[J]. 核技术, 2019, 42:030601 doi: 10.11889/j.0253-3219.2019.hjs.42.030601

    Hu Jifeng, Wang Xiaohe, Li Wenjiang, et al. Uncertainties analysis of reactivity parameters caused by nuclear data of molten salt experiment reactor[J]. Nuclear Techniques, 2019, 42: 030601 doi: 10.11889/j.0253-3219.2019.hjs.42.030601
    [14] 黄洪文, 武宇, 叶林, 等. 反应堆控制棒铪板性能研究[J]. 原子能科学技术, 2009, 43(s2):316-318

    Huang Hongwen, Wu Yu, Ye Lin, et al. Research of hafnium characteristic for control rod of reactor[J]. Atomic Energy Science and Technology, 2009, 43(s2): 316-318
    [15] 阮锡超. 我国核数据实验研究进展[J]. 核技术, 2023, 46:080003 doi: 10.11889/j.0253-3219.2023.hjs.46.080003

    Ruan Xichao. Nuclear data measurement progress in China[J]. Nuclear Techniques, 2023, 46: 080003 doi: 10.11889/j.0253-3219.2023.hjs.46.080003
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  33
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-18
  • 修回日期:  2024-05-13
  • 录用日期:  2024-04-28
  • 网络出版日期:  2024-06-24

目录

    /

    返回文章
    返回