留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩空气点火的无电烟火泵浦激光技术研究

蒋炜 郑涪升 何智兵 叶成 唐永建

蒋炜, 郑涪升, 何智兵, 等. 压缩空气点火的无电烟火泵浦激光技术研究[J]. 强激光与粒子束, 2024, 36: 061008. doi: 10.11884/HPLPB202436.240038
引用本文: 蒋炜, 郑涪升, 何智兵, 等. 压缩空气点火的无电烟火泵浦激光技术研究[J]. 强激光与粒子束, 2024, 36: 061008. doi: 10.11884/HPLPB202436.240038
Jiang Wei, Zheng Fusheng, He Zhibing, et al. Study on compressed air ignition non-electric pyrotechnically pumped laser technology[J]. High Power Laser and Particle Beams, 2024, 36: 061008. doi: 10.11884/HPLPB202436.240038
Citation: Jiang Wei, Zheng Fusheng, He Zhibing, et al. Study on compressed air ignition non-electric pyrotechnically pumped laser technology[J]. High Power Laser and Particle Beams, 2024, 36: 061008. doi: 10.11884/HPLPB202436.240038

压缩空气点火的无电烟火泵浦激光技术研究

doi: 10.11884/HPLPB202436.240038
基金项目: 四川省科技支撑计划项目(2021JDRC0019)
详细信息
    作者简介:

    蒋 炜,15569098@qq.com

    通讯作者:

    郑涪升,woyoucaidao@hotmail.com

  • 中图分类号: TN248

Study on compressed air ignition non-electric pyrotechnically pumped laser technology

  • 摘要: 为了解决传统固体烟火泵浦激光器点火效率低和电能依赖的问题,根据绝热压缩原理,设计使用了完全无电的压缩空气点燃烟火药泵浦Nd:YAG激光介质,提高了点火同步性和烟火药燃烧效率,实现了激光输出阈值药剂量10 mg,使用30 mg KClO4/Zr药剂,获得了30.2 mJ的激光能量,脉冲宽度10 ms,为小型无电高能激光器提供了一条新的实现路径。
  • 图  1  压缩空气点火的烟火泵浦激光器整机结构

    Figure  1.  Compressed air ignition pyrotechnic pumped laser structural

    图  2  烟火药燃烧时间波形

    Figure  2.  Pyrotechnic burn time waveform

    图  3  压缩空气点火的烟火药燃烧光谱

    Figure  3.  Spectral analysis of pyrotechnic combustion ignited by compressed air

    图  4  压缩空气点火的激光输出光谱

    Figure  4.  Laser output spectrum of compressed air ignition

    图  5  激光时间波形

    Figure  5.  Laser temporal waveform

    表  1  压缩空气点火实验结果

    Table  1.   Experimental results of compressed air ignition

    cylinder bore diameter/mmpiston stroke/mmluminescent length/mmcompression ratioadiabatic temperature/℃ignition status
    81001011.00322
    8100157.67264
    8100206.00228
    8100255.00202
    8100304.33183×
    8100353.86168×
    101001011.00322
    10100157.67264
    10100206.00228×
    10100255.00202×
    10100304.33183×
    10100353.86168×
    下载: 导出CSV

    表  2  压缩空气点火激光输出实验结果

    Table  2.   Experimental results of laser output with compressed air ignition

    pyrotechnic mass/mgcompression ratioluminescent length/mmlaser energy/mJnote
    107.6715no laser
    106.0020no laser
    105.00258.4
    207.67156.0
    206.002010.5
    205.002512.7
    307.6715cylinder explosion
    306.002018.4
    305.002530.2
    407.6715cylinder explosion
    406.0020cylinder explosion
    405.0025cylinder explosion
    下载: 导出CSV

    表  3  烟火泵浦激光器的主要研究成果

    Table  3.   The main research achievements of the pyrotechnic pumped laser

    references ignition
    method
    pyrotechnic
    form
    max threshold
    mass/mg
    max pulse
    width/ms
    max pyrotechnic
    mass/mg
    max laser
    energy
    max specific
    energy/(J·g−1)
    this article compressed air dust cloud 10 5 30 30.2 1.01
    in Ref.[16] point-type electric dust cloud 20 50 150 2151 14.33
    in Ref.[2] line-type electric granular 80 7-10
    in Ref.[10] line-type electric granular 7 500 1000 2.00
    in Ref.[9] line-type electric granular 1.2 50 55 1.10
    in Ref.[23] line-type electric torus 5.6 850 5500 6.47
    in Ref.[15] line-type electric granular 1080 40 2520 1010 0.40
    in Ref.[19] surface flash electric plane 20 10 100 702 7.02
    下载: 导出CSV
  • [1] Smith C L, Kisatsky P J. An investigation into the feasibility of a pyrotechnic laser pump[R] AD 420238, 1963: 1-68.
    [2] Bodretsova A I, Kaminskii A A, Levikov S I, et al. A quasicontinuous laser with pyrotechnical excitation[J]. Journal of Applied Spectroscopy, 1967, 6(2): 168-169. doi: 10.1007/BF00604344
    [3] Pencikowski P, Csik P. A long-range synthetic vision system combining a pyrotechnic-pumped laser and range-gated camera[C]//1996 IEEE Aerospace Applications Conference. Proceedings. 1996: 97-102.
    [4] Acharekar M A, LeBeau R. Miniature laser direct-detection radar[C]//Proceedings of SPIE 1633, Laser Radar VII: Advanced Technology for Applications. 1992: 94-111.
    [5] 朱长星, 叶迎华, 沈瑞琪, 等. Zr、Mg系烟火剂发光光谱特性研究[J]. 含能材料, 2005, 13(2):118-120 doi: 10.3969/j.issn.1006-9941.2005.02.013

    Zhu Changxing, Ye Yinghua, Shen Ruiqi, et al. Characteristic emission spectra of zirconium base and magnesium base pyrotechnic composites[J]. Chinese Journal of Energetic Materials, 2005, 13(2): 118-120 doi: 10.3969/j.issn.1006-9941.2005.02.013
    [6] 肖楠, 吴文健, 姜宗福. 烟火泵浦激光器泵浦材料发光光谱研究[J]. 火工品, 2006(4):4-8 doi: 10.3969/j.issn.1003-1480.2006.04.002

    Xiao Nan, Wu Wenjian, Jiang Zongfu. An investigation on pumping material’s emission spectrum of pyrotechnic pumped laser[J]. Initiators & Pyrotechnics, 2006(4): 4-8 doi: 10.3969/j.issn.1003-1480.2006.04.002
    [7] 肖楠, 姜宗福, 华卫红, 等. 雾化Mg粉对烟火泵浦源性能的影响[J]. 强激光与粒子束, 2008, 20(8):1378-1382

    Xiao Nan, Jiang Zongfu, Hua Weihong, et al. Effects of pulverized Mg powders on pyrotechnic pumping source[J]. High Power Laser and Particle Beams, 2008, 20(8): 1378-1382
    [8] Kang Xiaoli, Zhang Qiang, Luo Jiangshan, et al. Selective emissions during combustion of KClO4/Zr pyrotechnics for laser pump application[J]. Combustion Science and Technology, 2011, 20(12): 1401-1411.
    [9] Kaminskiĭ A A, Bodretsova A I, Petrosyan A G, et al. New quasi-cw pyrotechnically pumped crystal lasers[J]. Soviet Journal of Quantum Electronics, 1983, 13(7): 975-976. doi: 10.1070/QE1983v013n07ABEH004542
    [10] Bodretsova A I, Bagdasarov K S, Kaminskii A A. High-power Y3Al5O12: Nd3+ laser with an explosion-type lamp[J]. Kvantovaya Elektronika, 1972, 2(8): 107-108.
    [11] 肖楠, 姜宗福, 袁圣付, 等. 烟火泵浦钕玻璃激光器出光实验研究[J]. 强激光与粒子束, 2008, 20(1):17-20

    Xiao Nan, Jiang Zongfu, Yuan Shengfu, et al. Experimental study on output of pyrotechnically pumped Nd glass laser[J]. High Power Laser and Particle Beams, 2008, 20(1): 17-20
    [12] Baker R L. Pyrotechnic pumped laser for remote ordnance initiation system: 3618526[P]. 1971-11-09.
    [13] Clough G, Koehler H, Redhead D. Pyrotechnically excited laser system: 3836865[P]. 1974-09-17.
    [14] Houde-Walter W R. Laser gun and cartridge: WO1996008060A1[P]. 1996-03-14.
    [15] 肖楠, 姜宗福, 华卫红, 等. 烟火抽运激光器研究进展[J]. 激光与光电子学进展, 2009, 46(3):32-43

    Xiao Nan, Jiang Zongfu, Hua Weihong, et al. Investigation development of pyrotechnically pumped laser[J]. Laser & Optoelectronics Progress, 2009, 46(3): 32-43
    [16] Jiang Wei, Zheng Caiguo, Ye Cheng, et al. High-energy Nd: YAG laser technology based on dust-cloud pyrotechnic pumping[J]. Journal of Russian Laser Research, 2023, 44(4): 392-398. doi: 10.1007/s10946-023-10146-6
    [17] Song Y S, Hong J W, Lee J T. The turbulence measurement during the intake and compression process for high-turbulence generation around spark timing[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2001, 215(4): 493-501. doi: 10.1243/0954407011528103
    [18] Huang R F, Yang H S, Yeh C N. In-cylinder flows of a motored four-stroke engine with flat-crown and slightly concave-crown pistons[J]. Experimental Thermal and Fluid Science, 2008, 32(5): 1156-1167. doi: 10.1016/j.expthermflusci.2008.01.008
    [19] Yang Fan, Kang Xiaoli, Luo Jiangshan, et al. Laser emission from flash ignition of Zr/Al nanoparticles[J]. Optics Express, 2017, 25(20): A932-A939. doi: 10.1364/OE.25.00A932
    [20] Liang Dawei, Almeida J. Solar-pumped TEM00 mode Nd: YAG laser[J]. Optics Express, 2013, 21(21): 25107-25112. doi: 10.1364/OE.21.025107
    [21] Mizuno S, Ito H, Hasegawa K, et al. Laser emission from a solar-pumped fiber[J]. Optics Express, 2012, 20(6): 5891-5895. doi: 10.1364/OE.20.005891
    [22] Stepanov K L, Stanchits L K, Stankevich Y A. Modeling of explosion thermal radiation[J]. Journal of Engineering Physics and Thermophysics, 2011, 84(1): 179-206. doi: 10.1007/s10891-011-0462-3
    [23] Kaminskii A A, Bagayev S N, Ueda K, et al. 5.5 J pyrotechnically pumped Nd3+: Y3Al5O12 ceramic laser[J]. Laser Physics Letters, 2006, 3(3): 124-128. doi: 10.1002/lapl.200510073
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  10
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-25
  • 修回日期:  2024-04-24
  • 录用日期:  2024-04-16
  • 网络出版日期:  2024-04-30
  • 刊出日期:  2024-05-11

目录

    /

    返回文章
    返回