留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型脉冲功率发生器的电路方法与实践

江伟华 德地明 须贝太一 余亮 冯昱 庄龙宇 任小晶 杨钧翔

江伟华, 德地明, 须贝太一, 等. 小型脉冲功率发生器的电路方法与实践[J]. 强激光与粒子束, 2024, 36: 055001. doi: 10.11884/HPLPB202436.240053
引用本文: 江伟华, 德地明, 须贝太一, 等. 小型脉冲功率发生器的电路方法与实践[J]. 强激光与粒子束, 2024, 36: 055001. doi: 10.11884/HPLPB202436.240053
Jiang Weihua, Tokuchi Akira, Sugai Taichi, et al. Compact pulsed-power circuit methods and practice[J]. High Power Laser and Particle Beams, 2024, 36: 055001. doi: 10.11884/HPLPB202436.240053
Citation: Jiang Weihua, Tokuchi Akira, Sugai Taichi, et al. Compact pulsed-power circuit methods and practice[J]. High Power Laser and Particle Beams, 2024, 36: 055001. doi: 10.11884/HPLPB202436.240053

小型脉冲功率发生器的电路方法与实践

doi: 10.11884/HPLPB202436.240053
详细信息
    作者简介:

    江伟华,jiang@nagaokaut.ac.jp

  • 中图分类号: TM836

Compact pulsed-power circuit methods and practice

  • 摘要: 基于实用的观点综述性地归纳了小型脉冲功率发生器的主要电路方法,从电路的储能原理和电压叠加到开关单元设计及控制信号的产生技术。以作者的实际工作内容为主,用具体的电路实例介绍了几种脉冲功率电路的基本结构和主要结果。这些电路包括:电容储能Marx发生器,电感储能Marx发生器,混合储能Marx发生器,电容储能直线型变压器驱动器(LTD)和电感储能LTD。
  • 图  1  基于初级电容储能产生输出电压的基本方法的分类和简单示意图

    Figure  1.  Concept and illustration of voltage generation based on primary capacitive energy storage

    图  2  电压叠加的概念图

    Figure  2.  Illustrated concept of voltage adding

    图  3  使用功率半导体器件的开关单元

    Figure  3.  Switching unit using power semiconductor devices

    图  4  降压型DC-DC转换器

    Figure  4.  Step-down DC-DC converter

    图  5  搭载Intel Cyclone IV的Terasic制DE0-Nano型FPGA板

    Figure  5.  FPGA board DE0-Nano using Intel Cyclone IV, made by Terasic Inc

    图  6  采用电容储能的Marx发生器电路

    Figure  6.  Circuit diagram of Marx generator using capacitive energy storage

    图  7  采用电容储能Marx发生器得到的负载电压波形[25]

    Figure  7.  Output voltage waveform generated by Marx circuit using capacitive energy storage[25]

    图  8  采用电感储能的Marx发生器电路

    Figure  8.  Circuit diagram of Marx generator using inductive energy storage

    图  9  采用电感储能Marx发生器得到的负载电压波形[26]

    Figure  9.  Output voltage waveform generated by Marx circuit using inductive energy storage[26]

    图  10  采用混合储能的Marx发生器电路

    Figure  10.  Circuit diagram of Marx generator using hybrid energy storage

    图  11  采用混合储能Marx发生器得到的负载电压波形[28]

    Figure  11.  Output voltage waveform generated by Marx circuit using hybrid energy storage[28]

    图  12  采用电容储能的LTD模块等效电路

    Figure  12.  Equivalent circuit of LTD module using capacitive energy storage

    图  13  采用电容储能LTD得到的负载电压波形[29]

    Figure  13.  Output voltage waveform generated by LTD using capacitive energy storage

    图  14  采用电感储能的LTD模块等效电路

    Figure  14.  Equivalent circuit of LTD module using inductive energy storage

    图  15  采用电感储能LTD得到的负载电压波形[36]

    Figure  15.  Output voltage waveform generated by LTD circuit using inductive energy storage[36]

  • [1] Martin J C. Nanosecond pulse techniques[J]. Proceedings of the IEEE, 1992, 80(6): 934-945. doi: 10.1109/5.149456
    [2] Schamiloglu E, Barker R J, Gundersen M, et al. Modern pulsed power: Charlie Martin and beyond[J]. Proceedings of the IEEE, 2004, 92(7): 1014-1020. doi: 10.1109/JPROC.2004.829058
    [3] Akiyama H, Sakugawa T, Namihira T, et al. Industrial applications of pulsed power technology[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1051-1064. doi: 10.1109/TDEI.2007.4339465
    [4] Jiang Weihua, Yatsui K, Takayama K, et al. Compact solid-state switched pulsed power and its applications[J]. Proceedings of the IEEE, 2004, 92(7): 1180-1196. doi: 10.1109/JPROC.2004.829003
    [5] 江伟华. 高重复频率脉冲功率技术及其应用: (6)代表性的应用[J]. 强激光与粒子束, 2014, 26:030201 doi: 10.3788/HPLPB20142603.30201

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (VI) Typical applications[J]. High Power Laser and Particle Beams, 2014, 26: 030201 doi: 10.3788/HPLPB20142603.30201
    [6] Schoenbach K H, Katsuki S, Stark R H, et al. Bioelectrics-new applications for pulsed power technology[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 293-300. doi: 10.1109/TPS.2002.1003873
    [7] Jang S R, Ryoo H J, Goussev G. Compact and high repetitive pulsed power modulator based on semiconductor switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(4): 1242-1249. doi: 10.1109/TDEI.2011.5976122
    [8] Sack M, Keipert S, Hochberg M, et al. Design considerations for a fast stacked-MOSFET switch[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2630-2636. doi: 10.1109/TPS.2013.2267395
    [9] McCauley D R, Belt D W, Mankowski J J, et al. Compact electroexplosive fuses for explosively driven pulsed power[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2691-2699. doi: 10.1109/TPS.2008.2004230
    [10] Huiskamp T, Beckers F J C M, van Heesch E J M, et al. First implementation of a subnanosecond rise time, variable pulse duration, variable amplitude, repetitive, high-voltage pulse source[J]. IEEE Transactions on Plasma Science, 2014, 42(3): 859-867. doi: 10.1109/TPS.2014.2300895
    [11] Pecastaing L, Rivaletto M, de Ferron A S, et al. Development of a 0.6-MV ultracompact magnetic core pulsed transformer for high-power applications[J]. IEEE Transactions on Plasma Science, 2018, 46(1): 156-166. doi: 10.1109/TPS.2017.2781620
    [12] Collier L, Kajiwara T, Dickens J, et al. Fast SiC switching limits for pulsed power applications[J]. IEEE Transactions on Plasma Science, 2019, 47(12): 5306-5313. doi: 10.1109/TPS.2019.2928535
    [13] Redondo L M, Zahyka M, Kandratsyeu A. Solid-state generation of high-frequency burst of bipolar pulses for medical applications[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 4091-4095. doi: 10.1109/TPS.2019.2923570
    [14] Kamada A, Sugai T, Tokuchi A, et al. Step-down DC-DC converter for solid-state Marx generator[J]. IEEE Transactions on Plasma Science, 2021, 49(10): 3149-3153. doi: 10.1109/TPS.2021.3114320
    [15] Kazemi M R, Sugai T, Tokuchi A, et al. Waveform control of pulsed-power generator based on solid-state LTD[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 247-251. doi: 10.1109/TPS.2016.2640315
    [16] Kazemi M R, Sugai T, Tokuchi A, et al. Study of pulsed atmospheric discharge using solid-state LTD[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2323-2327. doi: 10.1109/TPS.2017.2707105
    [17] Yang Junxiang, Zhuang Longyu, Feng Yu, et al. Feedback control of pulsed-power generator based on solid-state linear transformer driver[J]. Review of Scientific Instruments, 2021, 92: 084704. doi: 10.1063/5.0054555
    [18] Yang Junxiang, Sugai T, Tokuchi A, et al. Pulsed gas discharge driven by bipolar solid-state linear transformer driver[J]. IEEE Transactions on Plasma Science, 2023, 51(6): 1451-1458. doi: 10.1109/TPS.2023.3272573
    [19] Wu Yifan, Liu Kefu, Qiu Jian, et al. Repetitive and high voltage Marx generator using solid-state devices[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 937-940. doi: 10.1109/TDEI.2007.4286529
    [20] Redondo L M, Silva J F. Repetitive high-voltage solid-state Marx modulator design for various load conditions[J]. IEEE Transactions on Plasma Science, 2009, 37(8): 1632-1637. doi: 10.1109/TPS.2009.2023221
    [21] Zhou Ziwei, Li Zi, Rao Junfeng, et al. A high-performance drive circuit for all solid-state Marx generator[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2779-2784. doi: 10.1109/TPS.2016.2577704
    [22] Wang Yifan, Liu Kefu, Qiu Jian, et al. A stage-stage paralleled topology of all-solid-state Marx generator for high current[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4488-4494. doi: 10.1109/TPS.2019.2914313
    [23] Li Chengxiang, Wang Enzhao, Yao Chenguo, et al. Compact solid-state Marx-bank sub-nanosecond pulse generator based on gradient transmission line theory[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2181-2188. doi: 10.1109/TDEI.2017.006367
    [24] Huiskamp T, Van Oorschot J J. Fast pulsed power generation with a solid-state impedance-matched Marx generator: concept, design, and first implementation[J]. IEEE Transactions on Plasma Science, 2019, 47(9): 4350-4360. doi: 10.1109/TPS.2019.2934642
    [25] Ren Xiaojing, Okada Y, Hiroyasu R, et al. Solid-state Marx generator for application to dielectric barrier discharge[J]. IEEJ Transactions on Fundamentals and Materials, 2020, 140(1): 36-39. doi: 10.1541/ieejfms.140.36
    [26] Ren Xiaojing, Sugai T, Tokuchi A, et al. Solid-state Marx generator circuit based on inductive energy storage[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3377-3382. doi: 10.1109/TPS.2021.3076082
    [27] Jiang Weihua. On pulsed power generation using hybrid energy storage[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3644-3651. doi: 10.1109/TPS.2021.3121085
    [28] Ren Xiaojing, Sugai T, Tokuchi A, et al. Solid-state Marx generator using hybrid energy storage[J]. IEEE Transactions on Plasma Science, 2022, 50(12): 4905-4911. doi: 10.1109/TPS.2022.3219588
    [29] Jiang Weihua, Sugiyama H, Tokuchi A. Pulsed power generation by solid-state LTD[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3603-3608. doi: 10.1109/TPS.2014.2358627
    [30] Collier L, Dickens J, Mankowski J, et al. Performance analysis of an all solid-state linear transformer driver[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1755-1761. doi: 10.1109/TPS.2017.2712361
    [31] Rao Junfeng, Zhu Yicheng, Wang Yonggang, et al. Study on the basic characteristics of solid-state linear transformer drivers[J]. IEEE Transactions on Plasma Science, 2020, 48(9): 3168-3175.
    [32] Wang Limin, Zhang Zhengquan, Liu Qingxiang, et al. Development of a 500-kV all solid-state linear transformer driver[J]. IEEE Transactions on Plasma Science, 2021, 49(6): 1915-1919. doi: 10.1109/TPS.2021.3077610
    [33] Umeda H, Sugai T, Jiang Weihua. Direct-drive oscillation of KrF excimer laser using pulsed power generator based on LTD[J]. IEEE Transactions on Plasma Science, 2021, 49(12): 3892-3896. doi: 10.1109/TPS.2021.3128225
    [34] Umeda H, Sugai T, Jiang Weihua. High-current operation of racetrack-shaped LTD using SiC-MOSFETs for pulsed laser applications[J]. IEEE Transactions on Plasma Science, 2023, 51(1): 172-176. doi: 10.1109/TPS.2022.3224724
    [35] Jiang Weihua. Solid-state LTD module using power MOSFETs[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2730-2733. doi: 10.1109/TPS.2010.2051042
    [36] Feng Yu, Sugai T, Tokuchi A, et al. Solid-state linear transformer driver using inductive energy storage[J]. IEEE Transactions on Plasma Science, 2020, 48(9): 3188-3192. doi: 10.1109/TPS.2020.3017657
    [37] Feng Yu, Sugai T, Jiang Weihua. Solid-state bipolar linear transformer driver using inductive energy storage[J]. IEEE Transactions on Plasma Science, 2021, 49(9): 2887-2892. doi: 10.1109/TPS.2021.3103743
  • 加载中
图(15)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  53
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-07
  • 修回日期:  2024-03-11
  • 录用日期:  2024-03-11
  • 网络出版日期:  2024-03-19
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回