留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单路直线变压器驱动源中组件自放电连锁故障影响分析

万臻博 丁卫东

万臻博, 丁卫东. 单路直线变压器驱动源中组件自放电连锁故障影响分析[J]. 强激光与粒子束, 2024, 36: 075003. doi: 10.11884/HPLPB202436.240063
引用本文: 万臻博, 丁卫东. 单路直线变压器驱动源中组件自放电连锁故障影响分析[J]. 强激光与粒子束, 2024, 36: 075003. doi: 10.11884/HPLPB202436.240063
Wan Zhenbo, Ding Weidong. Influence analysis of cascading failure in linear transformer driver caused by group prefire[J]. High Power Laser and Particle Beams, 2024, 36: 075003. doi: 10.11884/HPLPB202436.240063
Citation: Wan Zhenbo, Ding Weidong. Influence analysis of cascading failure in linear transformer driver caused by group prefire[J]. High Power Laser and Particle Beams, 2024, 36: 075003. doi: 10.11884/HPLPB202436.240063

单路直线变压器驱动源中组件自放电连锁故障影响分析

doi: 10.11884/HPLPB202436.240063
基金项目: 国家自然科学基金项目(51790524,51790521)
详细信息
    作者简介:

    万臻博,claisen@stu.xjtu.edu.cn

    通讯作者:

    丁卫东,wdding@xjtu.edu.cn

  • 中图分类号: TM836

Influence analysis of cascading failure in linear transformer driver caused by group prefire

  • 摘要: 建立电路模型分析了28级单路直线变压器驱动源(LTD)中可能出现的组件自放电连锁故障过程。结果表明当任何一个4级组件被误触发时,均会导致整个单路LTD连锁动作,产生的故障电压无法被单路驱动源输出端的隔离开关限制。且当误动的组件位于单路LTD下游时,电压沿着传输线向上游传播会在第1组件较低阻抗的传输线上产生远高于正常放电时的峰值场强,有可能引发装置的绝缘故障。通过适当增加第1组件传输线内外导体的间隙可以在几乎不影响负载电流输出幅值和波形的前提下削弱反向传播的连锁故障导致的高峰值场强,从而提高装置运行的可靠性。
  • 图  1  28级LTD装置的结构与触发方式

    Figure  1.  Structure and triggering mode of the 28-stage LTD device

    图  2  单级LTD的等效电路

    Figure  2.  Equivalent circuit for single-stage LTD

    图  3  28级LTD电路模型的负载电流仿真结果

    Figure  3.  Load current in the 28-stage LTD circuit model

    图  4  第1组件放电时第5级模块开关上的电压波形

    Figure  4.  Voltage on gas switches in the 5th stage module when the 1st group prefire

    图  5  连锁故障导致的传输线电压

    Figure  5.  Transmission line voltage caused by cascading failure

    图  6  不同组件放电时上下游模块开关上的电压峰值

    Figure  6.  Voltage on gas switches in the upstream and downstream stage module when different groups prefire

    图  7  正常时序放电时传输线峰值场强分布

    Figure  7.  Distribution of peak field intensity of transmission line during normal sequential discharge

    图  8  不同组件自放电连锁故障在每级模块水线处的电场强度

    Figure  8.  Electric field strength at the transmission line of each stage when different groups prefire

    图  9  第7组件自放电时模块处水线电场强度波形

    Figure  9.  Electric field strength at the transmission line when the 7th group prefire

    图  10  第1组件不同底面直径时的负极性传输线峰值电压和场强

    Figure  10.  Negative peak voltage and peak field intensity of cascading failure with different bottom diameters of the 1st group

    图  11  第1组件不同底面直径时的正常放电负载电流

    Figure  11.  Load current of normal discharging with different bottom diameters of the 1st group

  • [1] Deng Jianjun, Xie Weiping, Feng Shuping, et al. From concept to reality—a review to the primary test stand and its preliminary application in high energy density physics[J]. Matter and Radiation at Extremes, 2016, 1(1): 48-58. doi: 10.1016/j.mre.2016.01.004
    [2] Mao Chongyang, Sun Fengju, Xue Chuang, et al. Full-circuit simulation of next generation China Z-pinch driver CZ30[J]. IEEE Transactions on Plasma Science, 2019, 47(6): 2910-2915. doi: 10.1109/TPS.2019.2911553
    [3] Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments[J]. Physical Review Special Topics – Accelerators and Beams, 2015, 18: 110401. doi: 10.1103/PhysRevSTAB.18.110401
    [4] 孙凤举, 邱爱慈, 姜晓峰, 等. 基于共用腔体与内置触发的12级串联太瓦级LTD脉冲源[J]. 现代应用物理, 2022, 13(4): 040404

    Sun Fengju, Qiu Aici, Jiang Xiaofeng, et al. Twelve-stage linear transformer driver with one terra-watts power on a sharing common cavity shell and internal in-situ triggering method[J]. Modern Applied Physics, 2022, 13: 040404
    [5] 万臻博, 丁卫东, 孙凤举. 级联触发FLTD自放电故障连锁过程分析[C]//第八届全国脉冲功率技术学术交流会. 2023

    Wan Zhenbo, Ding Weidong, Sun Fengju. Analysis of prefire fault chain in the built-in cascade triggered FLTD[C]//The 8th National Pulse Power Technology Academic Exchange Conforence. 2023
    [6] 刘鹏. 开关闭合特性对多级感应腔串联FLTD性能影响的研究[D]. 西安: 西安交通大学, 2012: 80-90

    Liu Peng. Effect of closing characteristics of switches on the operating performance of multi-cavity-stacked fast linear transformer driver[D]. Xi’an: Xi’an Jiaotong University, 2012: 80-90
    [7] Deng Zichen, Yuan Qi, Ding Weidong, et al. Self-triggering topology for high-power nanosecond pulse generators based on avalanche transistors Marx bank circuits and linear transformer driver[J]. Review of Scientific Instruments, 2022, 93: 054702. doi: 10.1063/5.0088708
    [8] 魏浩, 孙凤举, 姜晓峰, 等. 直流叠加脉冲电压下FLTD气体开关击穿特性[J]. 强激光与粒子束, 2014, 26:045039 doi: 10.11884/HPLPB201426.045039

    Wei Hao, Sun Fengju, Jiang Xiaofeng, et al. Breakdown characteristics of gas spark switch for fast linear transformer driver under DC and pulse combined voltage[J]. High Power Laser and Particle Beams, 2014, 26: 045039 doi: 10.11884/HPLPB201426.045039
    [9] Wan Zhenbo, Ding Weidong, Sun Fengju, et al. The numerical simulation of a four-stage linear transformer driver module based on the Preisach magnetic core model[J]. Review of Scientific Instruments, 2023, 94: 113302. doi: 10.1063/5.0159633
    [10] 孙凤举, 姜晓峰, 王志国, 等. 四级串联共用腔体MA级FLTD的设计与仿真[J]. 强激光与粒子束, 2018, 30:035001 (Sun Fengju, Jiang Xiaofeng, Wang Zhiguo, et al. Design and simulation of fast linear transformer driver with four stages in series sharing common cavity shell and mega-ampere current[J]. High Power Laser and Particle Beams, 2018, 30: 035001 doi: 10.11884/HPLPB201830.170351

    Sun Fengju, Jiang Xiaofeng, Wang Zhiguo, et al. Design and simulation of fast linear transformer driver with four stages in series sharing common cavity shell and mega-ampere current[J]. High Power Laser and Particle Beams, 2018, 30: 035001 doi: 10.11884/HPLPB201830.170351
    [11] 王志国, 孙凤举, 姜晓峰, 等. FLTD大规模气体开关同步触发技术研究[J]. 现代应用物理, 2022, 13:040407 doi: 10.12061/j.issn.2095-6223.2022.040407

    Wang Zhiguo, Sun Fengju, Jiang Xiaofeng, et al. Synchronous trigger technology for large-scale gas switches of FLTD[J]. Modern Applied Physics, 2022, 13: 040407 doi: 10.12061/j.issn.2095-6223.2022.040407
    [12] Chen Lin, Zou Wenkang, Zhou Liangji, et al. Development of a fusion-oriented pulsed power module[J]. Physical Review Accelerators and Beams, 2019, 22: 030401. doi: 10.1103/PhysRevAccelBeams.22.030401
    [13] Douglass J D, Hutsel B T, Leckbee J J, et al. 100 GW linear transformer driver cavity: design, simulations, and performance[J]. Physical Review Accelerators and Beams, 2018, 21: 120401. doi: 10.1103/PhysRevAccelBeams.21.120401
    [14] He Xu, Sun Fengju, Jiang Xiaofeng, et al. Characteristics of switch prefire generated fault voltages transmitted in a four-stage LTD module[J]. IEEE Transactions on Plasma Science, 2022, 50(6): 1904-1911. doi: 10.1109/TPS.2022.3167998
    [15] 贾伟, 邱爱慈, 孙凤举, 等. 百纳秒脉冲下水压对水开关击穿特性的影响[J]. 高电压技术, 2006, 32(1):50-51,122 doi: 10.3969/j.issn.1003-6520.2006.01.019

    Jia Wei, Qiu Aici, Sun Fengju, et al. Effects of the pressure under the several hundred nanosecond pulse on the breakdown characteristics of the water switch[J]. High Voltage Engineering, 2006, 32(1): 50-51,122 doi: 10.3969/j.issn.1003-6520.2006.01.019
    [16] 张信军, 吴撼宇. 微秒脉冲作用下毫米级水介质间隙击穿特性研究[J]. 现代应用物理, 2015, 6(1):46-49,65

    Zhang Xinjun, Wu Hanyu. Electrical breakdown of water in milimeter level gap under microsecond rise-time pulse[J]. Modern Applied Physics, 2015, 6(1): 46-49,65
  • 加载中
图(11)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  39
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26
  • 修回日期:  2024-05-20
  • 录用日期:  2024-05-20
  • 网络出版日期:  2024-05-25
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回