Development and application of carbon based material grids for ion thruster: status quo and suggestions
-
摘要: 离子推力器是广泛应用于空间航天任务的电推力器之一,栅极在离子推力器中承担着引出离子并加速进而实现推力的作用,直接影响推力器性能及寿命。相比于传统钼栅,碳基栅极具有热膨胀系数低、耐离子溅射高等优势,是未来高比冲、大推力、长寿命离子推力器栅极的理想候选材料,已被国外部分先进离子推力器成功在轨应用。分析对比了不同栅极材料特性,调研总结了国内外碳基栅极研制过程及技术特点,并报道了作者近期在小口径不同构型C/C栅极与一体化C/C栅极研制方面的相关进展,最后针对我国离子电推进发展趋势,提出了后续碳基栅极研究的经验启示与建议。Abstract: Ion thruster is one of the widely used electric thrusters in space and space missions. The grid plays the role in extracting ions and accelerating them to achieve thrust, directly affecting the performance and lifespan of the thruster. Compared to traditional molybdenum grids, carbon based grids have advantages such as low thermal expansion coefficient and resistance to ion sputtering, making them ideal candidate materials for high specific impulse, high thrust, and long-life ion thruster. They have been successfully applied in orbit by some advanced ion thrusters abroad. This review analyzes and compares the characteristics of different grid materials, investigates and summarizes the development process and technical characteristics of carbon based grids at home and abroad, and reports the authors' recent progress in the development of small caliber, different configurations C/C grids, and integrated C/C grids. Finally, based on the development trend of ion propulsion in China, the review summarizes experiences and puts forward suggestions for subsequent carbon based grid research.
-
Key words:
- ion thruster /
- grid assembly /
- carbon-carbon composite material /
- pyrolytic graphite
-
表 1 栅极工作特性及失效因素
Table 1. Grid operating characteristics and failure factors
work characteristic failure factors failure form feather ion sputtering broken reinforcement and pit in the bridge shortened lifespan and decreased beam performance high temperature plasma bombardment grid thermal deformation grid ignition short circuit vibration shock grid local rupture induced beam failure 表 2 栅极材料主要物理特性参数
Table 2. Main physical characteristic parameters of grid material
grid material elastic modulus/GPa strength/MPa ion sputtering
rate/eVthermal expansion
coefficient/(10−6 K−1)safe electric
field/(kV/cm)molybdenum 324 655 50 4.9 40~50 PG 32 90 16 0 20~30 C/C 206 345 14 −1.8~−0.51 23~35 表 3 不同复合栅极成孔技术分析
Table 3. Analysis of different composite grid hole forming techniques
hole making method advantages disadvantages machining high efficiency and low cost poor quality and high tool loss EDM high precision and smooth hole wall shrinkage effect and high cost ultrasonic machining high precision and smooth hole wall shrinkage effect and high cost waterjet etching low processing cost poor quality and significant damage laser processing high quality and low damage high cost -
[1] 耿海, 李婧, 吴辰宸, 等. 空间电推进技术发展及应用展望[J]. 气体物理, 2023, 8(1):1-16Geng Hai, Li Jing, Wu Chenchen, et al. Development and application prospect of space electric propulsion technology[J]. Physics of Gases, 2023, 8(1): 1-16 [2] 郑茂繁, 江豪成. 离子推进器C/C复合材料栅极研究[J]. 航天器环境工程, 2010, 27(6):756-759 doi: 10.3969/j.issn.1673-1379.2010.06.020Zheng Maofan, Jiang Haocheng. C/C composite grid for ion thruster[J]. Spacecraft Environment Engineering, 2010, 27(6): 756-759 doi: 10.3969/j.issn.1673-1379.2010.06.020 [3] Madeev S, Selivanov M, Shagayda A, et al. Experimental study of ion optics with square apertures for high-power ion thrusters[J]. Review of Scientific Instruments, 2019, 90: 043302. doi: 10.1063/1.5090590 [4] Jovel D R, Walker M L R, Herman D. Review of high-power electrostatic and electrothermal electric propulsion[J]. Journal of Propulsion and Power, 2022, 38(6): 1051-1081. doi: 10.2514/1.B38594 [5] 张天平, 耿海, 张雪儿, 等. 离子电推进技术的发展现状与未来[J]. 上海航天, 2019, 36(6):88-96Zhang Tianping, Geng Hai, Zhang Xueer, et al. Current Status and future development of ion electric propulsion[J]. Aerospace Shanghai, 2019, 36(6): 88-96 [6] 陈娟娟, 张天平, 贾艳辉, 等. 20 cm氙离子推力器放电室性能优化[J]. 强激光与粒子束, 2012, 24(10):2469-2473 doi: 10.3788/HPLPB20122410.2469Chen Juanjuan, Zhang Tianping, Jia Yanhui, et al. Performance optimization of 20 cm xenon ion thruster discharge chamber[J]. High Power Laser and Particle Beams, 2012, 24(10): 2469-2473 doi: 10.3788/HPLPB20122410.2469 [7] 贾艳辉, 王聪, 李娟, 等. 三栅极离子推力器电子反流失效影响参数的敏感性研究[J]. 推进技术, 2020, 41(1):140-148Jia Yanhui, Wang Cong, Li Juan, et al. Parameter sensitivity analysis of electron backstreaming failure mode for 3-grid system ion thruster[J]. Journal of Propulsion Technology, 2020, 41(1): 140-148 [8] 孙明明, 耿海, 杨俊泰, 等. 离子推力器束流引出状态对栅极刻蚀的影响[J]. 强激光与粒子束, 2021, 33:024005 doi: 10.11884/HPLPB202133.200229Sun Mingming, Geng Hai, Yang Juntai, et al. Influence of ion beam perveance condition on grids erosion for ion thruster[J]. High Power Laser and Particle Beams, 2021, 33: 024005 doi: 10.11884/HPLPB202133.200229 [9] Garner C E, Brophy J R. Fabrication and testing of carbon-carbon grids for ion optics[C]//Proceedings of the 28th Joint Propulsion Conference and Exhibit. 1992: 3149. [10] Meserole J S. Measurement of relative erosion rates of carbon-carbon and molybdenum optics[C]//Proceedings of the 30th Joint Propulsion Conference and Exhibit. 1994: 3119. [11] De Pano M K, Hart S L, Hanna A A, et al. Fabrication and vibration results of 30-cm pyrolytic graphite ion optics[C]//Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004: 3615. [12] Goebel D M, Katz I. Fundamentals of electric propulsion: ion and Hall thrusters[M]. Hoboken: Wiley, 2008. [13] Mueller J, Brophy J R, Brown D K. Design, fabrication and testing of 30-cm dia. dished carbon-carbon ion engine grids[C]//Proceedings of the 32nd Joint Propulsion Conference and Exhibit. 1996: 3204. [14] Rawal S P, Perry A R, Williams J D, et al. Performance evaluation of 8-cm diameter ion optics assemblies fabricated from carbon-carbon composites[C]//Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004: 3614. [15] Haag T, Soulas G C. Performance and vibration of 30 cm pyrolytic ion thruster optics[C]//Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2003: 3178. [16] Haag T, Patterson M, Rawlin V, et al. Carbon-based ion optics development at NASA GRC[C]//Proceedings of the 27th International Electric Propulsion Conference. 2002: 1324. [17] Foster J E, Haag T, Kamhawi H, et al. The high power electric propulsion (HiPEP) ion thruster[C]//Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004: 3812. [18] Beatty J S, Snyder J S, Shih W. Manufacturing of 57cm carbon-carbon composite ion optics for 20-kW-class ion engine[C]//Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2005: 4441. [19] Kitamura S, Miyazaki K, Hayakawa Y, et al. Fabrication and testing of carbon-carbon composite grids for a 14 cm ion thruster[J]. IEPC Paper, 1995: 95-93. [20] Shirakawa R, Yamashita Y, Koda D, et al. Investigation and experimental simulation of performance deterioration of microwave discharge ion thruster μ10 during space operation[J]. Acta Astronautica, 2020, 174: 367-376. doi: 10.1016/j.actaastro.2020.05.004 [21] Snyder J, Goebel D M, Hofer R R, et al. Performance evaluation of the T6 ion engine[J]. Journal of Propulsion and Power, 2012, 28(2): 371-379. doi: 10.2514/1.B34173 [22] 陈玥. 离子推进C/C复合材料栅极的设计与力学分析[D]. 上海: 上海大学, 2017Chen Yue. Structural design and mechanical analysis on C/C grids for ion thruster[D]. Shanghai: Shanghai University, 2017 [23] 郭德洲, 顾左, 郑茂繁, 等. 离子推力器碳基材料栅极研究进展[J]. 真空与低温, 2016, 22(3):125-131 doi: 10.3969/j.issn.1006-7086.2016.03.001Guo Dezhou, Gu Zuo, Zheng Maofan, et al. The investigation of carbon-based material grid for ion thruster[J]. Vacuum & Cryogenics, 2016, 22(3): 125-131 doi: 10.3969/j.issn.1006-7086.2016.03.001 [24] 刘海波, 王晋宇, 韩灵生, 等. 离子推进器碳栅液氮冷却钻孔实验研究[C]//中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集——电推进技术. 2017: 46-51Liu Haibo, Wang Jinyu, Han Lingsheng, et al. Experimental and study on the cooling drilling of carbon and liquid nitrogen in ion thruster[C]//Conference Series on Electric Propulsion Technology. 2017: 46-51 [25] 魏贺冉, 罗锐祺, 张承双, 等. 基于栅极用碳/碳复合材料铺层角度的优化[J]. 航天制造技术, 2023(2):32-38 doi: 10.3969/j.issn.1674-5108.2023.02.006Wei Heran, Luo Ruiqi, Zhang Chengshuang, et al. Optimization of lamination angle based on carbon/carbon composite for grid[J]. Aerospace Manufacturing Technology, 2023(2): 32-38 doi: 10.3969/j.issn.1674-5108.2023.02.006 [26] Funaki I, Kuninaka H, Toki K, et al. Verification tests of carbon-carbon composite grids for microwave discharge ion thruster[J]. Journal of Propulsion and Power, 2002, 18(1): 169-175. doi: 10.2514/2.5913 [27] Kitamura S, Hayakawa Y, Kasai Y, et al. Fabrication of carbon-carbon composite ion thruster grids-improvement of structural strength[J]. IEPC Paper, 1997: 93-97. [28] Brophy J R, Marcucci M G, Ganapathi G B, et al. The ion propulsion system for Dawn[C]//Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2003: 4542. [29] Mueller J, Brown D K, Garner C E, et al. Fabrication of Carbon-Carbon grids for ion optics[C]//International Electric Propulsion Conference. 1993: 93-112. [30] Hedges D E, Meserole J S. Demonstration and evaluation of carbon-carbon ion optics[J]. Journal of Propulsion and Power, 1994, 10(2): 255-261. doi: 10.2514/3.23737 [31] 张天平. 兰州空间技术物理研究所电推进新进展[J]. 火箭推进, 2015, 41(2):7-12,32 doi: 10.3969/j.issn.1672-9374.2015.02.002Zhang Tianping. New progress of electric propulsion technology in LIP[J]. Journal of Rocket Propulsion, 2015, 41(2): 7-12,32 doi: 10.3969/j.issn.1672-9374.2015.02.002 -