留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学元件双面抛光加工面型预测模型

米智恺 聂凤明 黄思玲 薛枫

米智恺, 聂凤明, 黄思玲, 等. 光学元件双面抛光加工面型预测模型[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240068
引用本文: 米智恺, 聂凤明, 黄思玲, 等. 光学元件双面抛光加工面型预测模型[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240068
Mi Zhikai, Nie Fengming, Huang Siling, et al. Predictive modeling of the surface pattern of double-sided polishing process of optical components[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240068
Citation: Mi Zhikai, Nie Fengming, Huang Siling, et al. Predictive modeling of the surface pattern of double-sided polishing process of optical components[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240068

光学元件双面抛光加工面型预测模型

doi: 10.11884/HPLPB202436.240068
详细信息
    作者简介:

    米智恺,3117330394@qq.com

    通讯作者:

    聂凤明,nfm2006@sina.com

  • 中图分类号: TH706

Predictive modeling of the surface pattern of double-sided polishing process of optical components

  • 摘要: 针对双面抛光难以建立稳定去除函数进行加工面型预测这一问题,基于双面抛光加工原理,采用坐标变换法推导出元件上下表面相对速度分布方程,然后运用ANSYS软件仿真元件上下表面静态压力分布,采用多项式拟合法将仿真数据导入Matlab软件拟合出元件上下表面压力分布随时间变化公式。根据Preston方程推导修正系数K表达式,通过4组抛光实验数据计算出修正系数K值为2.588×10−15,构建双面抛光加工面型预测模型。最后通过加工实验验证该预测模型,实验结果表明预测PV值误差占元件实际加工后面型PV值的1.07%~7.4%,预测模型与实际加工后的面型吻合。
  • 图  1  双面抛光结构简图

    Figure  1.  Sketch of double-sided polishing structure

    图  2  下抛光盘与元件的运动关系简图

    Figure  2.  Sketch of the relationship between the motion of the down-throwing disc and the element

    图  3  上抛光盘与元件的运动关系简图

    Figure  3.  Sketch of the relationship between the movement of the up-throwing disc and the element

    图  4  上盘来回摆动的位置与时间关系示意图

    Figure  4.  Schematic diagram of the position of the upper disk swinging back and forth versus time

    图  5  直径300 mm上抛光盘元件下表面应力分布图

    Figure  5.  Stress distribution on the lower surface of the upper polishing disk element of 300 mm diameter

    图  6  元件下表面应力分布

    Figure  6.  Stress distribution on the lower surface of the component

    图  7  不同时刻下元件表面压强分布

    Figure  7.  Distribution of pressure on the surface of the element at different moments

    图  8  线性拟合Preston系数K的计算

    Figure  8.  Preston coefficient K calculation

    图  9  实验加工后与预测面型PV值对比图

    Figure  9.  Comparison between the predicted and the experimentally processed surface patterns

    图  10  预测与加工面型误差分布图

    Figure  10.  Distribution of prediction and machined surface pattern errors

    表  1  压强分布方程的系数

    Table  1.   Coefficients of pressure distribution equation

    p00 p10 p01 p20 p11 p02 p30 p21
    0.1528 −0.002813 −0.002813 2.042×10−5 5.041×10−5 2.044×10−5 −6.455×10−8 −1.173×10−7
    p12 p03 p40 p31 p22 p13 p04
    −1.172×10−7 −6.47×10−8 7.503×10−11 3.041×10−14 2.727×10−10 −1.021×10−13 7.528×10−11
    下载: 导出CSV

    表  2  修正实验中的抛光工艺参数

    Table  2.   Polishing process parameters in the modified experiment

    experimental group
    number
    element, upper plate,
    lower plate/rpm
    oscillation speed/
    (mm·s−1)
    time/s swing distance/
    mm
    distance from the center of the element
    to the center of the lower plate/mm
    1 10.1,10.9,10 5/6 2700 10 1260
    2 12.1,12.9,10 5/6 1800
    3 12.1,12.9,10 1/3 300
    4 10.1,10.9,10 1/3 420
    下载: 导出CSV

    表  3  预测验证实验工艺参数及实验数据与预测数据对比

    Table  3.   Prediction-validated expermental process parameters and comparsion between experimental data predicted data

    experimental
    group
    number
    element, upper
    plate, lower
    plate rpm/rpm
    oscillation
    speed
    (mm·s−1)
    time/s swing
    distance/
    mm
    distance from the center of
    the element to the center of
    the lower plate/mm
    experimental PV values/μm predicted PV values/μm
    1# 12.1,12.9,10 5/6 2700 80 0、1160 2.145 2.122
    2# 12.1,12.9,10 2 900 10 0、1160 1.149 1.122
    3# 10.1,10.9,8 1/3 600 10 0、1260 0.527 0.566
    4# 10.1,10.9,10 1/3 1800 10 0、1260 0.962 0.947
    5# 10.1,10.9,10 2 3600 10 110、1160 1.720 1.746
    下载: 导出CSV
  • [1] Campbell J H, Hawley-Fedder R A, Stolz C J, et al. NIF optical materials and fabrication technologies: an overview[C]//Proceedings of SPIE 5341, Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility. 2004: 84-101.
    [2] Satake U, Enomoto T, Fujii K, et al. Optimization method for double-sided polishing process based on kinematical analysis[J]. Procedia CIRP, 2016, 41: 870-874. doi: 10.1016/j.procir.2015.12.043
    [3] Hashimoto Y, Ozaki R, Furumoto T, et al. A calculation method for workpiece profile variation during double-sided lapping by considering workpiece elastic deformation[J]. Precision Engineering, 2022, 73: 457-469. doi: 10.1016/j.precisioneng.2021.09.016
    [4] 王春阳, 帅闻, 肖博, 等. 基于环摆式双面抛光法加工预测模型的去除均匀性研究[J]. 光学学报, 2023, 43:0914001 doi: 10.3788/AOS221863

    Wang Chunyang, Shuai Wen, Xiao Bo, et al. Uniformity removal based on processing prediction model of ring-pendulum double-sided polishing method[J]. Acta Optica Sinica, 2023, 43: 0914001 doi: 10.3788/AOS221863
    [5] 李振兴, 柏伟, 王琰璋, 等. 大尺寸非规则碲锌镉晶片双面抛光技术[J]. 人工晶体学报, 2023, 52(2):244-251

    Li Zhenxing, Bai Wei, Wang Yanzhang, et al. Study on double sided polishing technology of large size irregular CdZnTe wafer[J]. Journal of Synthetic Crystals, 2023, 52(2): 244-251
    [6] 陈庚豪. 3英寸AT切石英晶圆抛光片内非均匀性研究[D]. 武汉: 华中科技大学, 2022

    CHEN Genghao. Research on non-uniformity of polishing 3-inch AT-cut quartz crystal wafer[D]. Wuhan: Huazhong University of Science and Technology, 2022
    [7] 林涛. 基于磨粒磨损机制的光学元件快速抛光关键技术研究[D]. 厦门: 厦门大学, 2017

    Li Tao. Research on the optical element fast polishing key technology based on the abrasive wear mechanism[D]. Xiamen: Xiamen University, 2017
    [8] 徐雳, 刘冰, 吴石, 等. 双面研磨/抛光机磨削轨迹研究[J]. 哈尔滨理工大学学报, 2018, 23(4):43-50

    Xu Li, Liu Bing, Wu Shi, et al. Double-sided lapping/polishing machine grinding trajectory studies[J]. Journal of Harbin University of Science and Technology, 2018, 23(4): 43-50
    [9] 郭磊, 明子航, 靳淇超, 等. 弹性基体磨具的磨抛轨迹与表面加工质量研究[J]. 表面技术, 2022, 51(12):255-268

    Guo Lei, Ming Zihang, Jin Qichao, et al. Polishing trajectory and surface machining quality of elastic matrix abrasive tool[J]. Surface Technology, 2022, 51(12): 255-268
    [10] 陈真, 杨炜, 郭隐彪. 快速抛光技术接触压力建模与仿真[J]. 厦门大学学报(自然科学版), 2012, 51(2):215-218

    Chen Zhen, Yang Wei, Guo Yinbiao. Modeling and simulation for contact pressure of fast polishing process[J]. Journal of Xiamen University (Natural Science), 2012, 51(2): 215-218
    [11] 卢跃. 基于磨粒运动轨迹的端面磨削热力耦合过程分析[D]. 沈阳: 东北大学, 2019

    Lu Yue. Analysis of thermal mechanical coupling process of face grinding based on the movement trajectory of abrasive grains[D]. Shenyang: Northeastern University, 2019
    [12] 王鹏里, 董志国, 轧刚, 等. 基于软性磨料流的Preston方程kp参数的修正与测定[J]. 科学技术与工程, 2018, 18(2):232-236

    Wang Pengli, Dong Zhiguo, Ya Gang, et al. Modification and determination of the Preston equation kp parameter based on soft abrasive flow[J]. Science Technology and Engineering, 2018, 18(2): 232-236
    [13] Hashimoto Y, Furumoto T, Sato T, et al. Novel method to visualize Preston’s coefficient distribution for chemical mechanical polishing process[J]. Japanese Journal of Applied Physics, 2022, 61: 116502. doi: 10.35848/1347-4065/ac916b
    [14] 樊成. 光学曲面确定性抛光的面型精度控制研究[D]. 长春: 吉林大学, 2014

    Fan Cheng. Investigation on control of surface form accuracy for deterministic polishing of optical part surfaces[D]. Changchun: Jilin University, 2014
    [15] Wang Lijuan, Hu Zhongwei, Fang Congfu, et al. Study on the double-sided grinding of sapphire substrates with the trajectory method[J]. Precision Engineering, 2018, 51: 308-318. doi: 10.1016/j.precisioneng.2017.09.001
    [16] Bai Yifan, Xiao Bo, Wang Chunyang, et al. Polishing uniformity analysis and process optimization based on the kinematic model of ring pendulum double-sided polisher[J]. The International Journal of Advanced Manufacturing Technology, 2023, 126(11/12): 5689-5701.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  32
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 修回日期:  2024-05-08
  • 录用日期:  2024-04-30
  • 网络出版日期:  2024-05-22

目录

    /

    返回文章
    返回