留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

266 nm紫外弱聚焦激光触发伪火花开关研究

聂少豪 孙国祥 余锟浩 袁琪 丁卫东 王霞

聂少豪, 孙国祥, 余锟浩, 等. 266 nm紫外弱聚焦激光触发伪火花开关研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240086
引用本文: 聂少豪, 孙国祥, 余锟浩, 等. 266 nm紫外弱聚焦激光触发伪火花开关研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240086
Nie Shaohao, Sun Guoxiang, Yu Kunhao, et al. Study on pseudospark switch triggered by 266 nm ultraviolet weakly focused laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240086
Citation: Nie Shaohao, Sun Guoxiang, Yu Kunhao, et al. Study on pseudospark switch triggered by 266 nm ultraviolet weakly focused laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240086

266 nm紫外弱聚焦激光触发伪火花开关研究

doi: 10.11884/HPLPB202436.240086
基金项目: 国家自然科学基金项目(52377159)
详细信息
    作者简介:

    聂少豪,m13361670686@163.com

    通讯作者:

    丁卫东,wdding@xjtu.edu.cn

  • 中图分类号: TN134

Study on pseudospark switch triggered by 266 nm ultraviolet weakly focused laser

  • 摘要: 当前对于光触发伪火花开关的研究主要集中在使用紫外激光触发,触发物理机制普遍认为是光电发射。然而,当紫外弱聚焦激光在低电场环境中照射光电材料(靶材)时,由光电发射产生的种子电子非常有限。为了进一步揭示紫外弱聚焦激光触发物理机制,利用266 nm紫外弱聚焦激光,搭建了开关测试实验平台和种子电子测试实验平台,研究了激光能量、开关电压、气压、靶材材料、触发位置对开关触发特性的影响,分析了种子电子的来源和对触发开关的贡献。研究结果表明,在阴极背面孔边缘触发时,光电发射产生的瞬发电子不是种子电子的主要来源,与烧蚀等离子有关的超快电子才是。因此,当在阴极背面孔边缘触发时,密度和熔沸点低,易烧蚀的材料更适合作为紫外弱聚焦激光触发伪火花开关的靶材。经测试,当在阴极背面孔边缘触发,工作电压为-15 kV,气压为80 Pa(氦气)时,以镁为靶材的开关能实现稳定触发导通的最低激光能量为2 mJ,远低于铜(6 mJ)和钼(8 mJ)。此外,在上述相同条件下,,激光在开关阴极孔内壁触发时,触发时延和抖动分别为36.9 ns和1.41 ns,远低于在阴极背面孔边缘触发时的时延和抖动(116.4 ns和5.39 ns)。
  • 图  1  激光触发伪火花开关测试实验平台

    Figure  1.  Pseudospark switch triggered by laser test experimental platform

    图  2  伪火花开关实物图

    Figure  2.  Physical diagram of the pseudospark switch

    图  3  种子电子测试实验平台

    Figure  3.  Seed electron test experimental platform

    图  4  开关典型放电波形

    Figure  4.  Typical discharge waveform of the switch

    图  5  激光能量和气压对开关触发时延的影响

    Figure  5.  Influence of laser energy and gas pressure on the trigger delay of the switch

    图  6  激光能量和气压对开关触发时延抖动的影响

    Figure  6.  Influence of laser energy and gas pressure on the trigger delay jitter of the switch

    图  7  激光能量和工作电压对开关触发时延的影响

    Figure  7.  Influence of laser energy and working voltage on the trigger delay of the switch

    图  8  激光能量和工作电压对开关触发时延抖动的影响

    Figure  8.  Influence of laser energy and working voltage on the trigger delay jitter of the switch

    图  9  靶材材料对开关触发时延和抖动的影响

    Figure  9.  Influence of target materials on the trigger delay and jitter of the switch

    图  10  镁、铜、钼发射电子电流波形

    Figure  10.  Emission electron current waveform of magnesium, copper and molybdenum

    图  11  不同偏置电压下,镁发射电子电流波形

    Figure  11.  Emission electron current waveform of Mg under different bias voltages

    图  12  激光照射位置示意图

    Figure  12.  Schematic diagram of laser irradiation position

    图  13  阴极孔内壁触发的开关放电波形

    Figure  13.  Switching discharge waveform triggered on the inner wall of the cathode hole

  • [1] 张明, 周亮, 栾小燕, 等. 面向脉冲功率技术需求的伪火花开关技术[J]. 真空电子技术, 2021(1):1-9

    Zhang Ming, Zhou Liang, Luan Xiaoyan, et al. Pseudo-spark switch technologies for pulsed power sources[J]. Vacuum Electronics, 2021(1): 1-9
    [2] 孙国祥, 申赛康, 闫家启, 等. 伪火花放电初始阶段电势势垒形成的仿真研究[J]. 高电压技术, 2022, 48(1):358-365

    Sun Guoxiang, Shen Saikang, Yan Jiaqi, et al. Simulation investigation on the formation of potential barrier in the initial stage of pseudospark discharge[J]. High Voltage Engineering, 2022, 48(1): 358-365
    [3] Boeuf J P, Pitchford L C. Pseudospark discharges via computer simulation[J]. IEEE Transactions on Plasma Science, 1991, 19(2): 286-296. doi: 10.1109/27.106826
    [4] Varun, Pal U N. PIC simulation to analyze peak electron current generation in a triggered pseudospark discharge-based plasma cathode electron source[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1542-1549. doi: 10.1109/TED.2018.2808175
    [5] 邱毓昌. 伪火花开关的发展与应用[J]. 电工电能新技术, 1997(4):11-14,20

    Qiu Yuchang. Development and applications of pseudospark switches[J]. Advanced Technology of Electrical Engineering and Energy, 1997(4): 11-14,20
    [6] Yan Jiaqi, Shen Saikang, Wang Yanan, et al. A novel trigger for pseudospark switch with high repetition rate, low jitter, and compact structure[J]. Review of Scientific Instruments, 2018, 89: 065102. doi: 10.1063/1.5029420
    [7] Korolev Y D, Landl N V, Frants O B, et al. A sealed-off pseudospark switch with nanosecond stability of triggering[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4692-4697. doi: 10.1109/TED.2021.3096182
    [8] Lamba R P, Pal U N, Meena B L, et al. A sealed-off double-gap pseudospark switch and its performance analysis[J]. Plasma Sources Science and Technology, 2018, 27: 035003. doi: 10.1088/1361-6595/aaab80
    [9] Iberler M, Bischoff R, Frank K, et al. Fundamental investigation in two flashover-based trigger methods for low-pressure gas discharge switches[J]. IEEE Transactions on Plasma Science, 2004, 32(1): 208-214. doi: 10.1109/TPS.2004.825523
    [10] Kirkman G F, Gundersen M A. Low pressure, light initiated, glow discharge switch for high power applications[J]. Applied Physics Letters, 1986, 49(9): 494-495. doi: 10.1063/1.97128
    [11] Jiang Chunqi, Kuthi A, Gundersen M A. Toward ultracompact pseudospark switches[J]. Applied Physics Letters, 2005, 86: 024105. doi: 10.1063/1.1852080
    [12] Sozer E B, Jiang Chunqi, Gundersen M A, et al. Quantum efficiency measurements of photocathode candidates for back-lighted thyratrons[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 993-998. doi: 10.1109/TDEI.2009.5211845
    [13] Sozer E B, Gundersen M A, Jiang Chunqi. Magnesium-based photocathodes for back-lighted thyratrons[J]. IEEE Transactions on Plasma Science, 2012, 40(6): 1753-1758. doi: 10.1109/TPS.2012.2190829
    [14] 周亮, 张明, 孙承革. 激光触发伪火花开关的研究[J]. 强激光与粒子束, 2020, 32:035001

    Zhou Liang, Zhang Ming, Sun Chengge. Preliminary study of laser-triggered pseudospark switch[J]. High Power Laser and Particle Beam, 2020, 32: 035001
    [15] Sun Guoxiang, Wang Xia, Ding Weidong, et al. Study on pseudospark switch triggered by 532-nm focused laser[J]. IEEE Transactions on Electron Devices, 2023, 70(2): 765-770. doi: 10.1109/TED.2022.3229279
    [16] Sun Guoxiang, Nie Shaohao, Wang Xia, et al. Electron and ion emission characteristics of metal irradiated by nanosecond laser[J]. Journal of Physics D: Applied Physics, 2024, 57: 145201. doi: 10.1088/1361-6463/ad1a67
  • 加载中
图(13)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-10
  • 修回日期:  2024-06-28
  • 录用日期:  2024-06-24
  • 网络出版日期:  2024-07-08

目录

    /

    返回文章
    返回