[1] |
张明, 周亮, 栾小燕, 等. 面向脉冲功率技术需求的伪火花开关技术[J]. 真空电子技术, 2021(1):1-9 doi: 10.16540/j.cnki.cn11-2485/tn.2021.01.01Zhang Ming, Zhou Liang, Luan Xiaoyan, et al. Pseudo-spark switch technologies for pulsed power sources[J]. Vacuum Electronics, 2021(1): 1-9 doi: 10.16540/j.cnki.cn11-2485/tn.2021.01.01
|
[2] |
孙国祥, 申赛康, 闫家启, 等. 伪火花放电初始阶段电势势垒形成的仿真研究[J]. 高电压技术, 2022, 48(1):358-365 doi: 10.13336/j.1003-6520.hve.20201839Sun Guoxiang, Shen Saikang, Yan Jiaqi, et al. Simulation investigation on the formation of potential barrier in the initial stage of pseudospark discharge[J]. High Voltage Engineering, 2022, 48(1): 358-365 doi: 10.13336/j.1003-6520.hve.20201839
|
[3] |
Boeuf J P, Pitchford L C. Pseudospark discharges via computer simulation[J]. IEEE Transactions on Plasma Science, 1991, 19(2): 286-296. doi: 10.1109/27.106826
|
[4] |
Varun, Pal U N. PIC simulation to analyze peak electron current generation in a triggered pseudospark discharge-based plasma cathode electron source[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1542-1549. doi: 10.1109/TED.2018.2808175
|
[5] |
邱毓昌. 伪火花开关的发展与应用[J]. 电工电能新技术, 1997(4):11-14,20Qiu Yuchang. Development and applications of pseudospark switches[J]. Advanced Technology of Electrical Engineering and Energy, 1997(4): 11-14,20
|
[6] |
Yan Jiaqi, Shen Saikang, Wang Yanan, et al. A novel trigger for pseudospark switch with high repetition rate, low jitter, and compact structure[J]. Review of Scientific Instruments, 2018, 89: 065102. doi: 10.1063/1.5029420
|
[7] |
Korolev Y D, Landl N V, Frants O B, et al. A sealed-off pseudospark switch with nanosecond stability of triggering[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4692-4697. doi: 10.1109/TED.2021.3096182
|
[8] |
Lamba R P, Pal U N, Meena B L, et al. A sealed-off double-gap pseudospark switch and its performance analysis[J]. Plasma Sources Science and Technology, 2018, 27: 035003. doi: 10.1088/1361-6595/aaab80
|
[9] |
Iberler M, Bischoff R, Frank K, et al. Fundamental investigation in two flashover-based trigger methods for low-pressure gas discharge switches[J]. IEEE Transactions on Plasma Science, 2004, 32(1): 208-214. doi: 10.1109/TPS.2004.825523
|
[10] |
Kirkman G F, Gundersen M A. Low pressure, light initiated, glow discharge switch for high power applications[J]. Applied Physics Letters, 1986, 49(9): 494-495. doi: 10.1063/1.97128
|
[11] |
Jiang Chunqi, Kuthi A, Gundersen M A. Toward ultracompact pseudospark switches[J]. Applied Physics Letters, 2005, 86: 024105. doi: 10.1063/1.1852080
|
[12] |
Sozer E B, Jiang Chunqi, Gundersen M A, et al. Quantum efficiency measurements of photocathode candidates for back-lighted thyratrons[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 993-998. doi: 10.1109/TDEI.2009.5211845
|
[13] |
Sozer E B, Gundersen M A, Jiang Chunqi. Magnesium-based photocathodes for back-lighted thyratrons[J]. IEEE Transactions on Plasma Science, 2012, 40(6): 1753-1758. doi: 10.1109/TPS.2012.2190829
|
[14] |
周亮, 张明, 孙承革. 激光触发伪火花开关的研究[J]. 强激光与粒子束, 2020, 32:035001 doi: 10.11884/HPLPB202032.190094Zhou Liang, Zhang Ming, Sun Chengge. Preliminary study of laser-triggered pseudospark switch[J]. High Power Laser and Particle Beam, 2020, 32: 035001 doi: 10.11884/HPLPB202032.190094
|
[15] |
Sun Guoxiang, Wang Xia, Ding Weidong, et al. Study on pseudospark switch triggered by 532-nm focused laser[J]. IEEE Transactions on Electron Devices, 2023, 70(2): 765-770. doi: 10.1109/TED.2022.3229279
|
[16] |
Sun Guoxiang, Nie Shaohao, Wang Xia, et al. Electron and ion emission characteristics of metal irradiated by nanosecond laser[J]. Journal of Physics D: Applied Physics, 2024, 57: 145201. doi: 10.1088/1361-6463/ad1a67
|