Design and simulation of a simulated hail launcher based on reluctance coil
-
摘要: 基于光伏板模拟冰雹撞击试验的实际需求,开展了磁阻型线圈发射装置与脉冲功率源之间的匹配性研究。通过理论对续流前置型和续流后置型两种基本脉冲放电电路进行了适用性分析,结果表明,续流前置型脉冲放电电路与发射装置具有更优的匹配性。针对发射过程中剩余脉冲电流的反向制动问题,设计了一种可以快速消除剩余脉冲电流的泄能电路,用于改进续流前置型脉冲放电电路的拓扑结构,进一步提高其适用性,并借助仿真进行验证。结果表明,泄能电路能快速消除剩余脉冲电流的反向拉力影响,使抛体的发射性能显著提高,抛体出口速度相比传统放电电路提升50.8%,系统发射效率提高127.5%。该项研究可为磁阻式线圈发射技术应用在模拟撞击试验领域的研究提供参考。Abstract: Based on the practical needs of the simulated hail impact test of photovoltaic panels, a matching study between the reluctance coil launcher and the pulse power supply was carried out. The applicability of the two basic pulse discharge circuits, the current-continuing front type and the current-continuing back type, is theoretically analysed, and the results show that the current-continuing front type pulse discharge circuit has better matching with the launcher. In view of the reverse braking problem of the residual pulse current during the launching process, an energy-discharge circuit that can quickly consume the residual pulse current is designed to improve the topology of the current-continuing front type pulse discharge circuit to further improve its applicability, and it is verified with the help of simulation. The results show that the energy-discharge circuit can quickly consume the reverse pulling force effect of the residual pulse current, and the launch performance of thrown body is significantly improved, the exit speed of the thrown body is 50.8% higher than that of traditional discharge circuits, and the system emission efficiency is increased by 127.5%. This study can provide reference for the application of the reluctance coil launch technology in the field of simulated impact test.
-
表 1 磁阻型线圈发射装置参数
Table 1. Parameters of reluctance coil launcher
outer radius/mm inner radius/mm total axial length coil spacing per stage number of turns parameters per turn 44.5 18 89 11 10×18 1 mm×8 mm energy storage
capacitor/mFcapacitor precharge
voltage/Vcapacitor internal
resistance/mΩprotective
inductor/$ {\text{μ}} $Hinductor internal
resistance/mΩcircuit-changing buffer
capacitor/$ {\text{μ}} $Fenergy-discharge
resistance/Ω1 800 2 3 3 10 10 表 2 两级磁阻型线圈发射装置开关开断时间
Table 2. Opening and closing time of two stage reluctance coil launcher
switch on time/ms off time/ms first stage coil main discharge switch 0 4.75 energy discharge switch 4.65 − second stage coil main discharge switch 4.75 8.40 energy discharge switch 8.30 − 表 3 两种脉冲放电电路发射性能对比
Table 3. Comparison of launch performance between two pulse discharge circuits
exit speed/(m·s−1) exit time/ms initial energy storage/J export kinetic energy/J launching efficiency/% conventional discharge circuit 22.00 10.28 640.00 12.10 1.89 new discharge circuit 33.18 9.38 640.00 27.52 4.30 -
[1] 戴益民, 李怿歆, 徐瑛, 等. 基于GA-BP神经网络的风雹耦合所致冰雹冲击力预测[J/OL]. 工程力学, 1-10. http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2023.06.0449?viewType=HTMLDai Yimin, Li Yixin, Xu Ying, et al. Prediction of hail impact force induced by wind-hail coupling based on GA-BP neural network[J/OL]. Engineering Mechanics, 1-10. http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2023.06.0449?viewType=HTML. [2] 闫文哲, 李强, 曲普, 等. 气体炮内弹道建模与实验研究[J]. 火炮发射与控制学报, 2021, 42(4):87-90,96Yan Wenzhe, Li Qiang, Qu Pu, et al. Interior ballistic modeling and experimental study of gas gun[J]. Journal of Gun Launch & Control, 2021, 42(4): 87-90,96 [3] 孟学平, 雷彬, 李治源, 等. 驱动线圈结构参数对磁阻发射器发射性能的影响[J]. 磁性材料及器件, 2014, 45(2):32-35,48 doi: 10.3969/j.issn.1001-3830.2014.02.008Meng Xueping, Lei Bin, Li Zhiyuan, et al. Influence of structure parameters of driving coil on the properties of reluctance launcher[J]. Journal of Magnetic Materials and Devices, 2014, 45(2): 32-35,48 doi: 10.3969/j.issn.1001-3830.2014.02.008 [4] 赵嘉琦, 李海涛, 吴亚楠, 等. 基于桥式驱动电路的磁阻型电磁发射器仿真与实验[J]. 高电压技术, 2024, 50(3):1348-1355Zhao Jiaqi, Li Haitao, Wu Yanan, et al. Simulation and experiment of reluctance electromagnetic launcher based on bridge drive circuit[J]. High Voltage Engineering, 2024, 50(3): 1348-1355 [5] Deng Huimin, Wang Yu, Lu Falong, et al. Optimization of reluctance accelerator efficiency by an improved discharging circuit[J]. Defence Technology, 2020, 16(3): 662-667. doi: 10.1016/j.dt.2019.08.013 [6] Yu Xinjie, Liu Xukun. Review of the meat grinder circuits for railguns[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1086-1094. doi: 10.1109/TPS.2017.2705164 [7] Liebfried O, Brommer V, Scharnholz S. Development of XRAM generators as inductive power sources for very high current pulses[C]//2013 Abstracts IEEE International Conference on Plasma Science. 2013: 1. [8] 王杰, 鲁军勇, 张晓, 等. 两型PFN模块的放电特性及优化[J]. 电机与控制学报, 2019, 23(8):10-18,27Wang Jie, Lu Junyong, Zhang Xiao, et al. Discharge characteristics and optimization of two types of PFN modules[J]. Electric Machines and Control, 2019, 23(8): 10-18,27 [9] 李振超, 金超亮, 戴玲, 等. 拉开时序下脉冲成形网络中半导体器件的击穿与保护[J]. 兵工学报, 2017, 38(12):2348-2353 doi: 10.3969/j.issn.1000-1093.2017.12.007Li Zhenchao, Jin Chaoliang, Dai Ling, et al. Breakdown and protection of semiconductor device in a sequentially fired pulse forming network[J]. Acta Armamentarii, 2017, 38(12): 2348-2353 doi: 10.3969/j.issn.1000-1093.2017.12.007 [10] Zhao Keyi, Xiang Hongjun, Li Zhiyuan, et al. Optimum design of driving circuit parameters for magnetic-resistance coil launcher[C]//17th International Symposium on Electromagnetic Launch Technology. 2014: 1-5. [11] Rivas-Camacho J L, Ponce-Silva M, Olivares-Peregrino V H. Experimental results concerning to the effects of the initial position of the projectile on the conversion efficiency of a reluctance accelerator[C]//13th International Conference on Power Electronics. 2016: 92-97. [12] Kim J, Ahn J. Modeling and optimization of a reluctance accelerator using DOE-based response surface methodology[J]. Journal of Mechanical Science and Technology, 2017, 31(3): 1321-1330. doi: 10.1007/s12206-017-0231-0 [13] Slade G W. A simple unified physical model for a reluctance accelerator[J]. IEEE Transactions on Magnetics, 2005, 41(11): 4270-4276. doi: 10.1109/TMAG.2005.856320 [14] 鲁军勇, 杜佩佩, 冯军红, 等. 电磁轨道发射器临界速度仿真研究[J]. 中国电机工程学报, 2019, 39(7):1862-1869Lu Junyong, Du Peipei, Feng Junhong, et al. Simulation study on critical velocity of electromagnetic rail launcher[J]. Proceedings of the CSEE, 2019, 39(7): 1862-1869 [15] Liang Chunyan, Xiang Hongjun, Yuan Xichao, et al. Reverse force suppression method of reluctance coil launcher based on consumption resistor[J]. IEEE Access, 2021, 9: 62770-62778. doi: 10.1109/ACCESS.2021.3073905 [16] 井保密, 廖同庆, 蒋铁珍, 等. 多级磁阻型电磁发射器的动态特性研究[J]. 南开大学学报(自然科学版), 2019, 52(3):55-59Jing Baomi, Liao Tongqing, Jiang Tiezhen, et al. Dynamic research on multi-stage reluctance electromagnetic launcher[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis (Natural Science Edition), 2019, 52(3): 55-59 [17] 刘洋. 线圈型发射装置建模及影响因素分析[D]. 武汉: 华中科技大学, 2020Liu Yang. Modeling of coil type electromagnetic launcher and analysis of influencing factors[D]. Wuhan: Huazhong University of Science and Technology, 2020 -