留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子FLASH-RT剂量学模拟计算与实验研究

程德琪 羊奕伟 王诗岚 唐镭迅 王翔

程德琪, 羊奕伟, 王诗岚, 等. 电子FLASH-RT剂量学模拟计算与实验研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240096
引用本文: 程德琪, 羊奕伟, 王诗岚, 等. 电子FLASH-RT剂量学模拟计算与实验研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240096
Cheng Deqi, Yang Yiwei, Wang Shilan, et al. Electron FLASH-RT dosimetry simulation and experimental research[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240096
Citation: Cheng Deqi, Yang Yiwei, Wang Shilan, et al. Electron FLASH-RT dosimetry simulation and experimental research[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240096

电子FLASH-RT剂量学模拟计算与实验研究

doi: 10.11884/HPLPB202436.240096
基金项目: 国家自然科学基金项目(12375318)
详细信息
    作者简介:

    程德琪,chengdeqi@hrbeu.edu.cn

    通讯作者:

    王 翔,xiang.wang@hrbeu.edu.cn

  • 中图分类号: R144.1

Electron FLASH-RT dosimetry simulation and experimental research

  • 摘要: 通过实验测量与数值模拟相结合的方法评估电子FLASH-RT的剂量学特性。实验中,使用EBT3胶片在固体水模中测量剂量,同时采用MCNP5程序模拟验证束流特征参数。实验平台基于9 MeV电子直线加速器构建,通过调整加速器参数,在源皮距1 m处实现了250 Gy/s的超高剂量率。实验与模拟结果在剂量分布上的最大偏差不超过5%,束流平坦度控制在3%以内。关键剂量率评估显示,加速器在最大工况下工作,可获得满足FLASH效应所需的超高剂量率。离轴剂量变化研究表明,引出窗中水层的存在改善了束流的均匀性。中心轴深度剂量分布分析表明,模拟与实验结果在水层厚度10 mm时吻合较好。二维剂量分布显示,模拟结果与EBT3胶片测量趋势一致。研究结果表明,电子FLASH-RT实验平台能够提供所需的超高剂量率,且实验与模拟结果具有较高的一致性,为FLASH-RT的进一步研究和应用提供了重要的剂量学参数和束流特征参考。
  • 图  1  电子FLASH-RT实验平台示意图

    Figure  1.  Schematic diagram of electron FLASH-RT experimental platform

    图  2  胶片平行于束流放置

    Figure  2.  Film is placed parallel to the beam direction

    图  3  MC模型示意图

    Figure  3.  Monte Carlo simulation diagram

    图  4  五次独立重复实验下不同深度处剂量的相对偏差

    Figure  4.  Relative deviation of the dose at different depths under five independent repeated experiments

    图  5  引出窗不同水层厚度下的离轴比曲线

    Figure  5.  Off-axis ratio curves at different water-layer thicknesses

    图  6  EBT3胶片和MC剂量分布曲线

    Figure  6.  EBT3 film and MC dose distribution curve

    图  7  EBT3胶片离轴比剂量分布曲线

    Figure  7.  Off-axis ratio dose distribution curve of EBT3 film

    图  8  水层厚度对百分深度剂量影响

    Figure  8.  Effect of water-layer thickness on the Percentage Depth Dose (PDD)

    图  9  EBT3胶片和MC模拟的深度剂量分布曲线

    Figure  9.  Depth dose distribution curves of EBT3 film and MC simulation

    图  10  EBT3胶片和MC模拟的二维剂量分布

    Figure  10.  Two-dimensional dose distribution of EBT3 film and MC simulation

    图  11  不同能量电子束的百分深度剂量曲线

    Figure  11.  PDD curves for electron beams at different energies

    图  12  电子束百分深度剂量随照射野大小的变化

    Figure  12.  PDD of the electron beam varies with field sizes

    图  13  射野中心轴横向电子分布

    Figure  13.  Lateral electron distribution in central-axis field size

    图  14  不同射野下的离轴比曲线

    Figure  14.  Off-axis ratio curves under different field sizes

  • [1] Durante M, Bräuer-Krisch E, Hill M. Faster and safer? FLASH ultra-high dose rate in radiotherapy[J]. British Journal of Radiology, 2018, 91: 20170628.
    [2] Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice[J]. Science Translational Medicine, 2014, 6: 245ra93.
    [3] Lin Binwei, Gao Feng, Yang Yiwei, et al. FLASH radiotherapy: history and future[J]. Frontiers in Oncology, 2021, 11: 644400. doi: 10.3389/fonc.2021.644400
    [4] Lempart M, Blad B, Adrian G, et al. Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation[J]. Radiotherapy and Oncology, 2019, 139: 40-45. doi: 10.1016/j.radonc.2019.01.031
    [5] Schüler E, Trovati S, King G, et al. Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator[J]. International Journal of Radiation Oncology·Biology·Physics, 2017, 97(1): 195-203.
    [6] Lansonneur P, Favaudon V, Heinrich S, et al. Simulation and experimental validation of a prototype electron beam linear accelerator for preclinical studies[J]. Physica Medica, 2019, 60: 50-57. doi: 10.1016/j.ejmp.2019.03.016
    [7] Mcmanus M, Romano F, Lee N D, et al. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate very high energy electron beams[J]. Scientific Reports, 2020, 10: 9089. doi: 10.1038/s41598-020-65819-y
    [8] Burns D T, McEwen M R. Ion recombination corrections for the NACP parallel-plate chamber in a pulsed electron beam[J]. Physics in Medicine & Biology, 1998, 43(8): 2033-2045.
    [9] Karsch L, Beyreuther E, Burris-Mog T, et al. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors[J]. Medical Physics, 2012, 39(5): 2447-2455. doi: 10.1118/1.3700400
    [10] Jaccard M, Petersson K, Buchillier T, et al. High dose-per-pulse electron beam dosimetry: usability and dose-rate independence of EBT3 Gafchromic films[J]. Medical Physics, 2017, 44(2): 725-735. doi: 10.1002/mp.12066
    [11] Gao Feng, Yang Yiwei, Zhu Hongyu, et al. First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays[J]. Radiotherapy and Oncology, 2022, 166: 44-50. doi: 10.1016/j.radonc.2021.11.004
    [12] 单李军, 周征, 羊奕伟, 等. 10MeV、>80Gy/s@1m的光子FLASH放疗射线源[J]. 强激光与粒子束, 2023, 35:124009 doi: 10.11884/HPLPB202335.230412

    Shan Lijun, Zhou Zheng, Yang Yiwei, et al. >80 Gy/s@1 m FLASH photon source at 10 MeV[J]. High Power Laser and Particle Beams, 2023, 35: 124009 doi: 10.11884/HPLPB202335.230412
    [13] Robinson S M, Esplen N, Wells D, et al. Monte Carlo simulations of EBT3 film dose deposition for percentage depth dose (PDD) curve evaluation[J]. Journal of Applied Clinical Medical Physics, 2020, 21(12): 314-324. doi: 10.1002/acm2.13078
    [14] 管永红, 黄娇凤, 刘进, 等. 蒙特卡罗技术在放射诊断剂量快速计算中的应用[J]. 强激光与粒子束, 2013, 25(1):193-195 doi: 10.3788/HPLPB20132501.0193

    Guan Yonghong, Huang Jiaofeng, Liu Jin, et al. Application of Monte Carlo technology to fast dose calculation of radiation therapy[J]. High Power Laser and Particle Beams, 2013, 25(1): 193-195 doi: 10.3788/HPLPB20132501.0193
    [15] 宋婷, 周凌宏. 基于蒙特卡罗方法的6 MV Truebeam剂量计算[J]. 强激光与粒子束, 2012, 24(12):2975-2978 doi: 10.3788/HPLPB20122412.2975

    Song Ting, Zhou Linghong. Dose calculation of 6 MV Truebeam using Monte Carlo method[J]. High Power Laser and Particle Beams, 2012, 24(12): 2975-2978 doi: 10.3788/HPLPB20122412.2975
    [16] Musolino S V. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water; Technical reports series No. 398[J]. Health Physics, 2001, 81(5): 592-593.
    [17] Shalek R J. Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures[J]. Medical Physics, 1977, 4: 461. doi: 10.1118/1.594356
    [18] Gerbi B J, Kirova Y M, Orecchia R. Clinical applications of high-energy electrons[M]//Levitt S H, Purdy J A, Perez C A, et al. Technical basis of radiation therapy: Practical clinical applications. 5th ed. Berlin: Springer, 2012: 157-196.
    [19] Khan F M, Doppke K P, Hogstrom K R, et al. Clinical electron-beam dosimetry: Report of AAPM radiation therapy committee task group No. 25[J]. Medical Physics, 1991, 18(1): 73-109. doi: 10.1118/1.596695
    [20] Ibbott G S. Radiation dosimetry: Electron beams with energies between 1 and 50 MeV (ICRU report No. 35)[J]. Medical Physics, 1985, 12: 813. doi: 10.1118/1.595780
    [21] Khan F M, Higgins P D, Gerbi B J, et al. Calculation of depth dose and dose per monitor unit for irregularly shaped electron fields[J]. Physics in Medicine & Biology, 1998, 43(10): 2741-2754.
  • 加载中
图(14)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  26
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-09-09
  • 录用日期:  2024-09-09
  • 网络出版日期:  2024-09-13

目录

    /

    返回文章
    返回