Energy deposition characteristics of tritium breeding blanket in laser inertial confinement fusion reactor
-
摘要: 参考国内外聚变堆技术,建立了一种200 MW激光惯性约束聚变堆包层概念设计,包层采用超临界二氧化碳和锂铅双冷结构。研究构建了瞬态和稳态耦合模型计算包层温度分布及变化。靶丸内爆反应使用MULTI-IFE进行计算,核热耦合部分基于蒙特卡罗程序OpenMC和自编程换热模型对包层模型结构、冷却和产氚进行计算。研究结果表明,核热耦合模型能够完成对包层的初步计算分析,周期性的瞬态载荷会引起第一壁面温度的振荡,但包层内部的温度最终会收敛到稳态计算结果。堆腔尺寸对于降低温度以及震荡效果明显,但仍需氙展平辐射功率峰。包层产氚和能量导出同时受到堆腔尺寸和增殖区的影响,在200 MW工况下,3 m半径和0.25 m增殖区尺寸计算结果最能满足需求。Abstract: This study presents a conceptual design of a 200 MW laser Inertial Confinement Fusion (ICF) reactor blanket, referring to fusion reactor technologies. The blanket employs a dual-coolant structure consisting of supercritical CO2 (S-CO2) and liquid lead-lithium (PbLi). Transient and steady-state coupled models are established to calculate the temperature distribution and variations within the blanket. The implosion of the pellets is computed using MULTI-IFE. The nuclear heat coupling part is based on the Monte Carlo program OpenMC and self-programmed heat transfer models to calculate the blanket’s structure, cooling, and tritium production. The research findings indicate that the nuclear heat coupling model can complete preliminary calculations and analysis of the blanket. Periodic transient loads cause oscillations in the temperature of the first wall surface, but the temperature inside the blanket eventually converges to the steady-state calculation results. The reactor size significantly affects temperature reduction and oscillation effects, but it still requires xenon to flat radiation power peak. Both tritium production and energy export from the blanket are influenced by the reactor cavity size and the size of the breeding zone. Under the 200 MW operating conditions, it shows that a 3 m radius and a 0.25 m breeding zone size best meet the requirements.
-
表 1 沉积热偏差
Table 1. Deposition heat deviation
No. ratio of reaction numbers/% error/% 1 1.4 0.75 2 24.4 −0.38 3 2.9 0.61 表 2 PbLi物性参数
Table 2. PbLi properties
parameter unit temperature dependent correlation equations ρ kg·m−3 $\rho = 10\;520.0 - 1.189T$ cp J·kg−1·K−1 ${c_p} = 194.74 - 9.0 \times {10^{ - 3}}T$ h J·kg−1 $h = 194.74\left( {T - {T_{\text{m}}}} \right) - 4.5 \times {10^{ - 3}}\left( {{T^2} - T_{\text{m}}^{\text{2}}} \right)$ λ W·m−1·K−1 $\lambda = 1.9463 + 1.96 \times {10^{ - 2}}T$ μ Pa·s $ \; \mu =0.009\;14-1.774\;59\times {10}^{-5} T+9.552\;1\times {10}^{-9} {T}^{2} $ 表 3 震荡后节点温度
Table 3. Node temperatures after fluctuation
(℃) No. transient state temperature steady state temperature transient state temperature with xenon 3 m 4 m 5 m 3 m 4 m 5 m 3 m 1 683.23 571.49 516.61 682.97 566.57 513.72 683.61 2 674.44 566.84 513.62 670.23 559.69 509.31 671.41 3 601.31 527.63 488.72 598.03 520.35 484.33 600.70 4 448.40 439.50 437.88 448.83 440.62 436.79 448.87 5 456.10 445.15 443.25 456.59 446.78 442.20 456.24 6 437.26 437.36 436.73 437.28 435.90 435.23 437.18 7 432.66 432.89 432.36 432.68 431.53 430.96 432.60 8 432.50 432.80 432.30 432.51 431.43 430.90 432.53 9 437.07 437.25 436.66 437.08 435.78 435.15 437.10 10 434.68 435.79 435.70 434.41 434.23 434.13 434.07 11 430.50 431.57 431.50 430.28 430.13 430.05 430.66 12 430.48 431.56 431.49 430.26 430.11 430.04 430.65 13 434.66 435.78 435.69 434.39 434.21 434.12 434.06 14 434.30 435.55 435.55 433.99 433.97 433.96 434.91 15 430.18 431.37 431.36 429.93 429.91 429.91 430.52 16 421.47 422.24 422.24 420.03 420.02 420.01 421.21 17 421.78 422.68 422.68 420.03 420.02 420.01 421.94 表 4 耦合模型对比结果
Table 4. Comparison results of coupled models
radius of
vessel/msize of breeding
zone/mtritium breeding
ratioPbLi energy export
proportion/%S-CO2 mass flow
rate/(kg/s)PbLi mass flow
rate/(kg/s)3 0.15 1.289 64 5.835 14.40/6.27/2.15 0.20 1.491 67 5.717 17.40/6.09/1.74 0.25 1.596 69 5.635 19.70/5.50/1.30 4 0.15 1.297 59 6.819 13.30/5.66/1.84 0.20 1.496 61 6.778 14.10/5.47/1.46 0.25 1.599 62 6.732 18.20/4.90/1.05 5 0.15 1.301 49 8.469 11.30/4.64/1.36 0.20 1.499 51 8.564 13.70/4.47/1.03 0.25 1.600 52 8.584 15.60/3.97/0.67 -
[1] 王淦昌. 利用大能量大功率的光激射器产生中子的建议[J]. 原子能科学技术, 1988(1):7-12Wang Ganchang. A proposal of using high energy and high power laser to produce neutrons[J]. Atomic Energy Science and Technology, 1988(1): 7-12 [2] 郑万国, 齐红基. 人类首次实现聚变“点火”, 激光聚变取得历史性突破[J]. 人工晶体学报, 2023, 52(1):1-7 doi: 10.3969/j.issn.1000-985X.2023.01.001Zheng Wanguo, Qi Hongji. An exclusive interview with ZHENG Wanguo on the “Ignition” milestone in human history[J]. Journal of Synthetic Crystals, 2023, 52(1): 1-7 doi: 10.3969/j.issn.1000-985X.2023.01.001 [3] Meier W R, Dunne A M, Kramer K J, et al. Fusion technology aspects of laser inertial fusion energy (LIFE)[J]. Fusion Engineering and Design, 2014, 89(9/10): 2489-2492. [4] Páramo A R, Sordo F, Garoz D, et al. Transmission final lenses in the HiPER laser fusion power plant: system design for temperature control[J]. Nuclear Fusion, 2014, 54: 123019. doi: 10.1088/0029-5515/54/12/123019 [5] 盛倩, 吴姝琴, 王晓宇, 等. 中国氦冷固态增殖剂实验包层模块材料研究进展[J]. 原子能科学技术, 2022, 56(7):1402-1412 doi: 10.7538/yzk.2022.youxian.0104Sheng Qian, Wu Shuqin, Wang Xiaoyu, et al. Research progress on material of helium cooled ceramic breeder test blanket module in China[J]. Atomic Energy Science and Technology, 2022, 56(7): 1402-1412 doi: 10.7538/yzk.2022.youxian.0104 [6] Zhang Dalin, Liu Limin, Liu Minghao, et al. Review of conceptual design and fundamental research of molten salt reactors in China[J]. International Journal of Energy Research, 2018, 42(5): 1834-1848. doi: 10.1002/er.3979 [7] Chen Lei, Jiang Kecheng, Ma Xuebin, et al. Conceptual design of the supercritical CO2 cooled lithium lead blanket for CFETR[J]. Fusion Engineering and Design, 2021, 173: 112800. doi: 10.1016/j.fusengdes.2021.112800 [8] Miura S, Nakamura K, Akahoshi E, et al. Lithium-lead corrosion behavior of zirconium oxide coating after heavy-ion irradiation[J]. Fusion Engineering and Design, 2021, 170: 112536. doi: 10.1016/j.fusengdes.2021.112536 [9] 严兵. 纳米ZrO2热障涂层隔热性能研究[J]. 战术导弹技术, 2014(3):95-98Yan Bing. Research on heat-insulating property of nano-zirconia thermal barrier coatings[J]. Tactical Missile Technology, 2014(3): 95-98 [10] Ramis R, Meyer-ter-Vehn J. MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations[J]. Computer Physics Communications, 2016, 203: 226-237. doi: 10.1016/j.cpc.2016.02.014 [11] Sacks R, Moses G, Tang V, et al. Parameter study of an inertial fusion energy chamber response using the 1-D BUCKY radiation hydrodynamics code[J]. Fusion Science and Technology, 2014, 66(2): 349-357. doi: 10.13182/FST14-789 [12] 戴涛, 曹良志, 贺清明, 等. 中国聚变工程试验堆包层的核热耦合效应研究[J]. 原子能科学技术, 2022, 56(1):136-145 doi: 10.7538/yzk.2021.youxian.0519Dai Tao, Cao Liangzhi, He Qingming, et al. Research on neutronics/thermal-hydraulics coupling effect of CFETR blanket[J]. Atomic Energy Science and Technology, 2022, 56(1): 136-145 doi: 10.7538/yzk.2021.youxian.0519 [13] Cao Qixiang, Wang Xiaoyu, Wu Xinghua, et al. Neutronics and shielding design of CFETR HCCB blanket[J]. Fusion Engineering and Design, 2021, 172: 112918. doi: 10.1016/j.fusengdes.2021.112918 [14] 李铸伦, 谢金森, 徐士坤, 等. 基于OpenMC的瞬发中子衰减常数计算模块开发与验证[J]. 原子能科学技术, 2022, 56(9):1906-1914 doi: 10.7538/yzk.2021.youxian.0667Li Zhulun, Xie Jinsen, Xu Shikun, et al. Development and verification of calculation module for prompt neutron attenuation constant based on OpenMC[J]. Atomic Energy Science and Technology, 2022, 56(9): 1906-1914 doi: 10.7538/yzk.2021.youxian.0667 [15] Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368. [16] Churchill S W. Friction-factor equation spans all fluid-flow regimes[J]. Chemical Engineering, 1977, 84(24): 91-92. [17] Liu Limin, Zhang Dalin, Song Jian, et al. Modification and application of Relap5 Mod3 code to several types of nonwater-cooled advanced nuclear reactors[J]. International Journal of Energy Research, 2018, 42(1): 221-235. doi: 10.1002/er.3949 [18] National Institute of Standards and Technology. NIST Chemistry WebBook: NIST Standard Reference Database Number 69[DB]. 2023. [19] Wang Wenjia, Cheng Xiaoman, Yu Yi, et al. Implementation of CO2 and PbLi as working fluids in RELAP5/MOD3.3 towards accident analysis of COOL blanket for CFETR[J]. Fusion Engineering and Design, 2022, 184: 113301. doi: 10.1016/j.fusengdes.2022.113301 -