Dynamics of asynchronous dual-wavelength pulse mode-locking
-
摘要: 设计了基于双峰滤波的掺铒全光纤激光模型,开展了异步双波长脉冲锁模动力学特性的数值模拟研究。以同一噪声作为初始条件,分别将增益光纤饱和能量设置为15、40、55 pJ,模拟结果表明:噪声最终分别演化成为单波长脉冲锁模、异步双波长脉冲锁模、孤子分子形式的异步双波长脉冲锁模,其中异步双波长脉冲生成的演化过程经历噪声脉冲、多脉冲锁模与增益竞争、稳定的异步双波长脉冲锁模3个阶段;增益光纤饱和能量的大小直接决定脉冲在增益竞争中的演化方向。脉冲碰撞过程中互相位调制作用引起的脉冲频率移动,导致时域脉冲时间抖动。Abstract: An erbium-doped all-fiber laser model based on dual-peak filter was designed, and the numerical simulation of the dynamic characteristics of asynchronous dual-wavelength pulse mode-locking was carried out. Using the same noise as the initial condition, and setting the saturation energy of the gain fiber to 15 pJ, 40 pJ and 55 pJ, respectively, the simulation results show that the noise finally evolves into single-wavelength pulse mode-locking, asynchronous dual-wavelength pulse mode-locking, and asynchronous dual-wavelength pulse mode-locking in the form of soliton molecules, in which the evolution process of asynchronous dual-wavelength pulses goes through three stages: noise pulse generation, multi-pulse mode-locking and gain competition, and stable asynchronous dual-wavelength pulse mode-locking. Besides, the saturation energy of the gain fiber directly determines the evolution direction of the pulse in the gain competition, and the pulse frequency shifts caused by cross-phase modulation during the pulse collision process result in the time domain pulse time jitter.
-
表 1 环形激光器模型相关参数
Table 1. Parameters related to the ring laser model
length/m gain coefficient/(dB·m−1) dispersion parameter β2/(ps2·km−1) nonlinear coefficient/(W·km) transmittance Er-doped fiber 1 5 −20.6 3 Gaussian, 40 nm SMF 1 0 −23 3 — output coupler — — — — 80% saturable absorber — — — — 1−0.7/(1+I/Isat) HI1060 0.5 0 −7 3 — spectral filter — — — — dual-peak, 4 nm 表 2 不同Esat条件下的脉冲特性
Table 2. Pulse characteristics with different Esat
Esat/pJ pulse width/ps spectral width/nm peak power/W pulse energy/pJ 1534 nm1566 nm1534 nm1566 nm1534 nm1566 nm1534 nm1566 nm15 0.42 — 6.88 — 188.01 — 87.28 — 40 0.33 0.36 8.02 8.11 245.45 254.33 100.65 100.65 15 to 40 0.30, 0.30 — 8.12 — 256.12,256.12 — 201.34 — 55 0.36, 0.36 0.36 7.41 7.65 234.23,233.70 233.72 193.23 96.59 -
[1] Bai Chen, Feng Ye, Zhang Weiguang, et al. Dual-parameter femtosecond mode-locking pulse generation in partially shared all-polarization-maintaining fiber Y-shaped oscillator with a single saturable absorber[J]. Opt Laser Technol, 2024, 169: 110021. doi: 10.1016/j.optlastec.2023.110021 [2] Rodriguez Cuevas A, Kudelin I, Kbashi H, et al. Single-shot dynamics of dual-comb generation in a polarization-multiplexing fiber laser[J]. Sci Rep, 2023, 13: 19673. doi: 10.1038/s41598-023-46999-9 [3] Cui Yudong, Zhang Yusheng, Huang Lin, et al. Dual-state vector soliton in mode-locked fiber laser[J]. Opt Laser Technol, 2023, 157: 108674. doi: 10.1016/j.optlastec.2022.108674 [4] Grelu P, Akhmediev N. Group interactions of dissipative solitons in a laser cavity: the case of 2+1[J]. Opt Express, 2004, 12(14): 3184-3189. doi: 10.1364/OPEX.12.003184 [5] Gu Lin, Cui Zhengwei, Shu Yiqing, et al. Switchable generation of dual-wavelength homogeneous and heterogeneous pulse patterns in a double-cavity fiber laser[J]. Infrared Phys Technol, 2022, 121: 104042. doi: 10.1016/j.infrared.2022.104042 [6] Guo Zhengru, Liu Tingting, Peng Junsong, et al. Self-started dual-wavelength mode-locking with well-controlled repetition rate difference[J]. J Lightwave Technol, 2021, 39(11): 3575-3581. doi: 10.1109/JLT.2021.3068785 [7] Huang Xinyu, Xiao Xiaosheng. Harmonic mode-locking of asynchronous dual-wavelength pulses in mode-locked all-fiber lasers[J]. Opt Commun, 2020, 474: 126079. doi: 10.1016/j.optcom.2020.126079 [8] Li Junwei, Li Heping, Wang Zhuang, et al. Real-time access to collisions between a two-soliton molecule and a soliton singlet in an ultrafast fiber laser[J]. Photonics, 2022, 9: 489. doi: 10.3390/photonics9070489 [9] Lau K Y, Cui Yudong, Liu Xiaofeng, et al. Real-time investigation of ultrafast dynamics through time-stretched dispersive Fourier transform in mode-locked fiber lasers[J]. Laser Photon Rev, 2023, 17: 2200763. doi: 10.1002/lpor.202200763 [10] Li Runmin, Shi Haosen, Tian Haochen, et al. All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter[J]. Opt Express, 2018, 26(22): 28302-28311. doi: 10.1364/OE.26.028302 [11] Luo Xing, Tuan T H, Saini T S, et al. Tunable and switchable all-fiber dual-wavelength mode locked laser based on Lyot filtering effect[J]. Opt Express, 2019, 27(10): 14635-14647. doi: 10.1364/OE.27.014635 [12] Jin Xinxin, Zhan Meng, Hu Guohua, et al. Broad bandwidth dual-wavelength fiber laser simultaneously delivering stretched pulse and dissipative soliton[J]. Opt Express, 2020, 28(5): 6937-6944. doi: 10.1364/OE.385142 [13] Tao Jianing, Song Pengye, Lv Chenyue, et al. Generation of widely tunable single- and dual-wavelength in a figure-eight mode-locked fiber laser[J]. Opt Laser Technol, 2023, 160: 109107. doi: 10.1016/j.optlastec.2022.109107 [14] Tao Jianing, Song Pengye, Hou Lei, et al. Synchronously-tunable bidirectional mode-locked fiber laser based on Lyot filtering effect[J]. Opt Laser Technol, 2023, 163: 109391. doi: 10.1016/j.optlastec.2023.109391 [15] Luo Xing, Tuan T H, Saini T S, et al. Switchable dual-wavelength mode-locked fiber laser using Saganc loop mirror[J]. Opt Commun, 2020, 463: 125457. doi: 10.1016/j.optcom.2020.125457 [16] Liu Meng, Li Tijian, Luo Aiping, et al. "Periodic" soliton explosions in a dual-wavelength mode-locked Yb-doped fiber laser[J]. Photonics Res, 2020, 8(3): 246-251. doi: 10.1364/PRJ.377966 [17] Li Zilong, Liu Huanhuan, Zha Zimin, et al. Universal dynamics and deterministic motion control of decoherently seeded temporal dissipative solitons via spectral filtering effect[J]. Photonics Res, 2023, 11(12): 2011-2019. doi: 10.1364/PRJ.500126 [18] Liu Runmin, Zou Defeng, Niu Shuang, et al. Collision-induced Hopf-type bifurcation reversible transitions in a dual-wavelength femtosecond fiber laser[J]. Opt Express, 2023, 31(2): 1452-1463. doi: 10.1364/OE.479837 [19] Zhou Yi, Ren Yuxuan, Shi Jiawei, et al. Dynamics of dissipative soliton molecules in a dual-wavelength ultrafast fiber laser[J]. Opt Express, 2022, 30(12): 21931-21942. doi: 10.1364/OE.461092 [20] 赵欣, 杨建军, 张力钎, 等. 单腔双光梳技术[J]. 中国激光, 2022, 49:1901003 doi: 10.3788/CJL202249.1901003Zhao Xin, Yang Jianjun, Zhang Liqian, et al. Single-cavity dual-comb technology[J]. Chin J Lasers, 2022, 49: 1901003 doi: 10.3788/CJL202249.1901003 [21] Yan Qi, Tian Yiwei, Zhang Tianqi, et al. Machine learning based automatic mode-locking of a dual-wavelength soliton fiber laser[J]. Photonics, 2024, 11: 47. doi: 10.3390/photonics11010047 [22] Xu Shutao, Zeng Junjie, Sander M Y. Real-time evolution dynamics during transitions between different dissipative soliton states in a single fiber laser[J]. Opt Express, 2023, 31(16): 25850-25864. doi: 10.1364/OE.494827