留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

谐波驱动自种子自由电子激光方案模拟

涂凌君 王晓凡 张未卿

涂凌君, 王晓凡, 张未卿. 谐波驱动自种子自由电子激光方案模拟[J]. 强激光与粒子束, 2024, 36: 071004. doi: 10.11884/HPLPB202436.240102
引用本文: 涂凌君, 王晓凡, 张未卿. 谐波驱动自种子自由电子激光方案模拟[J]. 强激光与粒子束, 2024, 36: 071004. doi: 10.11884/HPLPB202436.240102
Tu Lingjun, Wang Xiaofan, Zhang Weiqing. Simulation of harmonic lasing self-seeded free electron laser[J]. High Power Laser and Particle Beams, 2024, 36: 071004. doi: 10.11884/HPLPB202436.240102
Citation: Tu Lingjun, Wang Xiaofan, Zhang Weiqing. Simulation of harmonic lasing self-seeded free electron laser[J]. High Power Laser and Particle Beams, 2024, 36: 071004. doi: 10.11884/HPLPB202436.240102

谐波驱动自种子自由电子激光方案模拟

doi: 10.11884/HPLPB202436.240102
基金项目: 中国科学院科研仪器设备研制项目(GJJSTD20220001); 国家自然科学基金项目(22288201)
详细信息
    作者简介:

    涂凌君,tulingjun@mail.iasf.ac.cn

    通讯作者:

    王晓凡,wangxf@mail.iasf.ac.cn

    张未卿,weiqingzhang@dicp.ac.cn

  • 中图分类号: TN248.6

Simulation of harmonic lasing self-seeded free electron laser

  • 摘要: 在自由电子激光(FEL)中,谐波驱动自种子(HLSS)可以减小自放大自发辐射(SASE)机制的辐射带宽、提高X射线波段FEL的谱亮度,其原理已被FLASH、PAL、European XFEL等实验室验证。HLSS可改善SASE FEL的相干性,但同时相对SASE并没有提出新的硬件需求,因此可以很方便地应用于国内在建或运行在SASE机制的自由电子激光装置。本文对HLSS方案实现窄带宽效果的原理进行了归纳,给出了波荡器参数的定量条件;随后使用深圳中能高重复频率X射线自由电子激光的典型参数进行模拟,模拟结果表明在出光波长为4.5 nm与6.75 nm时,HLSS的带宽减小至SASE的1/2左右,同时谱亮度提高至2倍左右。
  • 图  1  谐波辐射与基波辐射的滑移对比。对于$ {\lambda }_{1}/3 $辐射波长,其在图1(a)的滑移长度大于图1(b)

    Figure  1.  Comparison of the slippage at $ {\lambda }_{1}/3 $ coming from harmonic generation and fundamental generation. The slippage in Fig.1 (a) is longer than that in Fig.1 (b)

    图  2  特定辐射波长分别由3次谐波辐射与基波辐射产生时,相干长度之比

    Figure  2.  Ratio of coherent lengths at a certain wavelength, for lasing at the third harmonic and at the fundamental wavelength

    图  3  HLSS与SASE对比概念图

    Figure  3.  Conceptual layout of the comparison of HLSS and SASE

    图  4  三次谐波辐射(THG)与基波辐射能量和带宽演化过程对比(10发平均)

    Figure  4.  Comparison of the pulse energy and the bandwidth of FEL (10 shots average), from the third harmonic generation (THG) and from the resonant wavelength

    图  5  HLSS 方案中,扫描第一级波荡器共振波长导致最终出光的能量和带宽(10发平均)的变化

    Figure  5.  Variation of the energy and bandwidth (10 shots average) when scanning resonance wavelength in the HLSS scheme

    图  6  在4.5 nm,HLSS与SASE的对比(10发平均)

    Figure  6.  Comparison of HLSS and SASE (10 shots average) when lasing at 4.5 nm

    图  7  在6.75 nm,HLSS与SASE在波荡器出口的光谱对比(10发平均)

    Figure  7.  Comparison of the spectrum (10 shots average) at 6.75 nm from HLSS and SASE at different distance from the undulator exit

    表  1  模拟用到的参数

    Table  1.   Parameters for simulation

    beam energy/GeVenergy spread/%current/Abeam length/$ {\text{μ}}$mnormalized emittance /$ {\text{μ}}$radperiod/cmperiod numberFODO length/m
    2.530.012800650.394.39310
    下载: 导出CSV
  • [1] Feldhaus J, Saldin E L, Schneider J R, et al. Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL[J]. Optics Communications, 1997, 140(4/6): 341-352.
    [2] Pellegrini C, Reiche S, Rosenzweig J, et al. Optimization of an X-ray SASE-FEL[J]. AIP Conference Proceedings, 2001, 581(1): 221-228.
    [3] Feng Chao, Deng Haixiao. Review of fully coherent free-electron lasers[J]. Nuclear Science and Techniques, 2018, 29: 160. doi: 10.1007/s41365-018-0490-1
    [4] Zhao Zhentang, Wang Dong, Gu Qiang, et al. SXFEL: a soft X-ray free electron laser in China[J]. Synchrotron Radiation News, 2017, 30(6): 29-33. doi: 10.1080/08940886.2017.1386997
    [5] Geloni G, Saldin E, Samoylova L, et al. Coherence properties of the European XFEL[J]. New Journal of Physics, 2010, 12: 035021. doi: 10.1088/1367-2630/12/3/035021
    [6] Galayda J N. The LCLS-II: a high power upgrade to the LCLS[R]. Menlo Park: SLAC National Accelerator Laboratory, 2018.
    [7] Macias I J B, Düsterer S, Ivanov R, et al. Study of temporal, spectral, arrival time and energy fluctuations of SASE FEL pulses[J]. Optics Express, 2021, 29(7): 10491-10508. doi: 10.1364/OE.419977
    [8] Geloni G, Kocharyan V, Saldin E. A novel self-seeding scheme for hard X-ray FELs[J]. Journal of Modern Optics, 2011, 58(16): 1391-1403. doi: 10.1080/09500340.2011.586473
    [9] Xiang Dao, Ding Yuantao, Huang Zhirong, et al. Purified self-amplified spontaneous emission free-electron lasers with slippage-boosted filtering[J]. Physical Review Special Topics - Accelerators and Beams, 2013, 16: 010703. doi: 10.1103/PhysRevSTAB.16.010703
    [10] Wu Jiacong, Marinelli A, Pellegrini C. Generation of longitudinally coherent ultra high power X-ray FEL pulses by phase and amplitude mixing[C]//Proceedings of the 34th International Free Electron Laser Conference. 2012: 237-240.
    [11] McNeil B W J, Thompson N R, Dunning D J. Transform-limited X-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser[J]. Physical Review Letters, 2013, 110: 134802. doi: 10.1103/PhysRevLett.110.134802
    [12] Schneidmiller E A, Yurkov M V. Harmonic lasing in X-ray free electron lasers[J]. Physical Review Special Topics - Accelerators and Beams, 2012, 15: 080702. doi: 10.1103/PhysRevSTAB.15.080702
    [13] Schneidmiller E A, Faatz B, Kuhlmann M, et al. First operation of a harmonic lasing self-seeded free electron laser[J]. Physical Review Accelerators and Beams, 2017, 20: 020705. doi: 10.1103/PhysRevAccelBeams.20.020705
    [14] Nam I, Min C K, Kim C, et al. Soft X-ray harmonic lasing self-seeded free electron laser at Pohang Accelerator Laboratory X-ray free electron laser[J]. Applied Physics Letters, 2018, 112: 213506. doi: 10.1063/1.5030443
    [15] Schneidmiller E A, Brinker F, Decking W, et al. Observation of harmonic lasing in the Angstrom regime at European X-ray Free Electron Laser[J]. Physical Review Accelerators and Beams, 2021, 24: 030701. doi: 10.1103/PhysRevAccelBeams.24.030701
    [16] Wang Xiaofan, Zeng Li, Shao Jiahang, et al. Physical design for Shenzhen Superconducting Soft X-ray free-electron laser (S3FEL)[C]//Proceedings of the 14th International Particle Accelerator Conference. 2023: 1852-1855.
    [17] 金光齐, 黄志戎, 瑞安·林德伯格. 同步辐射与自由电子激光——相干X射线产生原理[M]. 黄森林, 刘克新, 译. 北京: 北京大学出版社, 2018

    Kim K J, Huang Zhirong, Lindberg R. Synchrotron radiation and free-electron lasers: principles of coherent X-ray generation[M]. Huang Senlin, Liu Kexin, trans. Beijing: Peking University Press, 2018
    [18] McNeil B W J, Robb G R M, Poole M W, et al. Harmonic lasing in a free-electron-laser amplifier[J]. Physical Review Letters, 2006, 96: 084801. doi: 10.1103/PhysRevLett.96.084801
    [19] Isono F, Schroeder C, van Tilborg J, et al. Frequency redshift of seeded FEL radiation generated with a low-energy chirped electron beam[C]//APS Division of Plasma Physics Meeting. 2021: GO05.011.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  62
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 修回日期:  2024-05-11
  • 录用日期:  2024-05-11
  • 网络出版日期:  2024-05-29
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回