Nernst effects study using dopant layer on magnetized target
-
摘要: 双层磁化套筒靶在内层采用高原子序数(Z)材料,减少了因能斯特效应导致的磁通损失并降低点火要求,为磁化靶聚变提供了一种备选方案。然而,添加高Z材料也可能增加由于物质混合而产生的辐射损失。通过在金属套筒中使用带有塑料掺杂的锗作为高Z替代物,初步分析了磁场能斯特输运和物质混合对磁化套筒惯性聚变的影响。与单层套筒相比,双层套筒靶展示出温度和磁通的显著增加,从而使聚变产额提高了154%。将碳氢掺杂剂添加到最内层的锗中,模拟了物质混合对聚变产额的影响。研究结果表明,锗与CH混合,保持较低的混合比例,能够显著提高聚变产额。Abstract: The two-layer magnetized liner target offers an alternative approach to magnetized target fusion implosions by incorporating high atomic number (Z) materials in the innermost layer to mitigate magnetic flux losses caused by Nernst effects and reduce ignition requirements. However, the inclusion of high-Z materials may lead to increased radiation losses due to mixing. This preliminary research on magnetized liner inertial fusion (MagLIF) utilizes germanium (Ge) doped with CH as a high-Z substitute in the liner to isolate the effects of magnetic Nernst advection and mixing. Compared to one-layer targets, the two-layer configuration demonstrates significant increases in temperature and magnetic flux, resulting in a 154% improvement in fusion yield. Different concentrations of CH dopant are introduced into the inner layer of Ge, and the effects of CH concentrations on fusion yield are analyzed. The study shows that using low concentration CH-doped Ge as inner layer of liner can enhance fusion yield.
-
Key words:
- two-layer liner /
- magnetized target fusion /
- Nernst effects /
- dopant /
- mixture
-
图 2 双层磁化掺杂锗(5% CH)套筒靶中归一化的燃料离子温度、磁场以及密度沿半径的分布,实线考虑了能斯特对流,虚线未考虑
Figure 2. Normalized ion temperature, magnetic field and fuel density in the fuel of the two-layer magnetized Ge dopant (5% CH) liner target are plotted as functions of radius. The solid lines are results with the Nernst term included, while the dashed lines are without
表 1 磁化双层套筒靶初始参数
Table 1. Initial parameters of magnetized two-layer liner target
fuel
radius/mmgermanium
thickness/mmberyllium
thickness/mmliner
length/mmpeak current
drive/MAaxial magnetic
field/Tpreheated
temperature/eVinitial preheat
time/ns2.7 0.002 0.538 10 30 15 250 75 -
[1] Gotchev O V, Chang Poyu, Knauer J P, et al. Laser-driven magnetic-flux compression in high-energy-density plasmas[J]. Physical Review Letters, 2009, 103: 215004. doi: 10.1103/PhysRevLett.103.215004 [2] McBride R D, Slutz S A, Vesey R A, et al. Exploring magnetized liner inertial fusion with a semi-analytic model[J]. Physics of Plasmas, 2016, 23: 012705. doi: 10.1063/1.4939479 [3] McBride R D, Slutz S A, Jennings C A, et al. Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator[J]. Physical Review Letters, 2012, 109: 135004. doi: 10.1103/PhysRevLett.109.135004 [4] Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505 [5] Slutz S A, Gomez M R, Hansen S B, et al. Enhancing performance of magnetized liner inertial fusion at the Z facility[J]. Physics of Plasmas, 2018, 25: 112706. doi: 10.1063/1.5054317 [6] 赵海龙, 肖波, 王刚华, 等. 磁化套筒惯性聚变研究进展[J]. 强激光与粒子束, 2020, 32:052001 doi: 10.11884/HPLPB202032.190357Zhao Hailong, Xiao Bo, Wang Ganghua, et al. Research progress of magnetized liner inertial fusion[J]. High Power Laser and Particle Beams, 2020, 32: 052001 doi: 10.11884/HPLPB202032.190357 [7] 肖德龙, 王小光, 王冠琼, 等. 7~8 MA条件下MagLIF集成实验关键问题理论研究与设计[J]. 强激光与粒子束, 2023, 35:022001 doi: 10.11884/HPLPB202335.220253Xiao Delong, Wang Xiaoguang, Wang Guanqiong, et al. Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility[J]. High Power Laser and Particle Beams, 2023, 35: 022001 doi: 10.11884/HPLPB202335.220253 [8] Gomez M R, Slutz S A, Jennings C A, et al. Performance scaling in magnetized liner inertial fusion experiments[J]. Physical Review Letters, 2020, 125: 155002. doi: 10.1103/PhysRevLett.125.155002 [9] Slutz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Physical Review Letters, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003 [10] Chen Shijia, Yang Xiaohu, Wu Fuyuan, et al. Electrothermal effects on high-gain magnetized liner inertial fusion[J]. Plasma Physics and Controlled Fusion, 2021, 63: 115019. doi: 10.1088/1361-6587/ac234d [11] Velikovich A L, Giuliani J L, Zalesak S T. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma[J]. Physics of Plasmas, 2015, 22: 042702. doi: 10.1063/1.4916777 [12] Amendt P, Cerjan C, Hamza A, et al. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums[J]. Physics of Plasmas, 2007, 14: 056312. doi: 10.1063/1.2716406 [13] Dewald E L, Pino J E, Tipton R E, et al. Pushered single shell implosions for mix and radiation trapping studies using high-Z layers on National Ignition Facility[J]. Physics of Plasmas, 2019, 26: 072705. doi: 10.1063/1.5109426 [14] Milovich J L, Amendt P, Marinak M, et al. Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs[J]. Physics of Plasmas, 2004, 11(4): 1552-1568. doi: 10.1063/1.1646161 [15] Ramis R. One-dimensional Lagrangian implicit hydrodynamic algorithm for Inertial Confinement Fusion applications[J]. Journal of Computational Physics, 2017, 330: 173-191. doi: 10.1016/j.jcp.2016.11.011 [16] Ramis R, Meyer-ter-Vehn J. MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations[J]. Computer Physics Communications, 2016, 203: 226-237. doi: 10.1016/j.cpc.2016.02.014 [17] Kemp A J, Meyer-ter-Vehn J. An equation of state code for hot dense matter, based on the QEOS description[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 415(3): 674-676. doi: 10.1016/S0168-9002(98)00446-X [18] Eidmann K. Radiation transport and atomic physics modeling in high-energy-density laser-produced plasmas[J]. Laser and Particle Beams, 1994, 12(2): 223-244. doi: 10.1017/S0263034600007709 [19] Murakami M, Meyer-ter-Vehn J, Ramis R. Thermal X-ray emission from ion-beam-heated matter[J]. Journal of X-Ray Science and Technology, 1990, 2(2): 127-148. doi: 10.3233/XST-1990-2204 [20] Chen Shijia, Ma Yanyun, Wu Fuyuan, et al. Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum[J]. Chinese Physics B, 2021, 30: 115201. doi: 10.1088/1674-1056/ac01c2 [21] 吴福源, 褚衍运, 叶繁, 等. Z箍缩动态黑腔形成过程MULTI程序一维数值模拟[J]. 物理学报, 2017, 66:215201 doi: 10.7498/aps.66.215201Wu Fuyuan, Chu Yanyun, Ye Fan, et al. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI[J]. Acta Physica Sinica, 2017, 66: 215201 doi: 10.7498/aps.66.215201 [22] Braginskii S I. Transport processes in a plasma[M]//Leontovich M A. Reviews of Plasma Physics. New York: Consultants Bureau, 1965: 205-311. [23] 赵海龙, 王刚华, 肖波, 等. 磁化套筒惯性聚变中轴向磁场演化特征与Nernst效应影响[J]. 物理学报, 2021, 70:135201 doi: 10.7498/aps.70.20202215Zhao Hailong, Wang Ganghua, Xiao Bo, et al. Evolution characteristic of axial magnetic field and Nernst effect in magnetized liner inertial fusion[J]. Acta Physica Sinica, 2021, 70: 135201 doi: 10.7498/aps.70.20202215