留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用掺杂层研究磁化靶中的能斯特效应

陈诗佳 张华 周沧涛 卓红斌 吴福源 RafaelRamis

陈诗佳, 张华, 周沧涛, 等. 利用掺杂层研究磁化靶中的能斯特效应[J]. 强激光与粒子束, 2024, 36: 092002. doi: 10.11884/HPLPB202436.240106
引用本文: 陈诗佳, 张华, 周沧涛, 等. 利用掺杂层研究磁化靶中的能斯特效应[J]. 强激光与粒子束, 2024, 36: 092002. doi: 10.11884/HPLPB202436.240106
Chen Shijia, Zhang Hua, Zhou Cangtao, et al. Nernst effects study using dopant layer on magnetized target[J]. High Power Laser and Particle Beams, 2024, 36: 092002. doi: 10.11884/HPLPB202436.240106
Citation: Chen Shijia, Zhang Hua, Zhou Cangtao, et al. Nernst effects study using dopant layer on magnetized target[J]. High Power Laser and Particle Beams, 2024, 36: 092002. doi: 10.11884/HPLPB202436.240106

利用掺杂层研究磁化靶中的能斯特效应

doi: 10.11884/HPLPB202436.240106
基金项目: 国家重点研发项目(2023YFA1608403,2022YFA1603300);国家自然科学基金项目(12205200,12205185,12375237);中国博士后科学基金项目(2023M742402);深圳市科技计划资助项目(RCBS20221008093131086,ZDSYS20200811143600001)
详细信息
    作者简介:

    陈诗佳,chenshijia@sztu.edu.cn

    通讯作者:

    张 华,zhanghua@sztu.edu.cn

    周沧涛,zhoucangtao@sztu.edu.cn

  • 中图分类号: O532

Nernst effects study using dopant layer on magnetized target

  • 摘要: 双层磁化套筒靶在内层采用高原子序数(Z)材料,减少了因能斯特效应导致的磁通损失并降低点火要求,为磁化靶聚变提供了一种备选方案。然而,添加高Z材料也可能增加由于物质混合而产生的辐射损失。通过在金属套筒中使用带有塑料掺杂的锗作为高Z替代物,初步分析了磁场能斯特输运和物质混合对磁化套筒惯性聚变的影响。与单层套筒相比,双层套筒靶展示出温度和磁通的显著增加,从而使聚变产额提高了154%。将碳氢掺杂剂添加到最内层的锗中,模拟了物质混合对聚变产额的影响。研究结果表明,锗与CH混合,保持较低的混合比例,能够显著提高聚变产额。
  • 图  1  内爆磁化双层套筒靶示意图

    Figure  1.  Implosion magnetized two-layer liner target design

    图  2  双层磁化掺杂锗(5% CH)套筒靶中归一化的燃料离子温度、磁场以及密度沿半径的分布,实线考虑了能斯特对流,虚线未考虑

    Figure  2.  Normalized ion temperature, magnetic field and fuel density in the fuel of the two-layer magnetized Ge dopant (5% CH) liner target are plotted as functions of radius. The solid lines are results with the Nernst term included, while the dashed lines are without

    图  3  内层中含有和不含95% Ge 掺杂层的内爆轨迹和驱动电流

    Figure  3.  Implosion diagram and driven current with and without the 95% Ge dopant in the inner layer

    图  4  不同浓度CH掺杂的聚变产额

    Figure  4.  Fusion yield for various CH dopant concentrations

    图  5  内层中含有和不含95% Ge掺杂层的磁通量

    Figure  5.  Magnetic flux in targets with and without 95% Ge inner layer

    图  6  不同内层物质的峰值压缩温度

    Figure  6.  Temperature at peak compression with various inner layer

    表  1  磁化双层套筒靶初始参数

    Table  1.   Initial parameters of magnetized two-layer liner target

    fuel
    radius/mm
    germanium
    thickness/mm
    beryllium
    thickness/mm
    liner
    length/mm
    peak current
    drive/MA
    axial magnetic
    field/T
    preheated
    temperature/eV
    initial preheat
    time/ns
    2.7 0.002 0.538 10 30 15 250 75
    下载: 导出CSV
  • [1] Gotchev O V, Chang Poyu, Knauer J P, et al. Laser-driven magnetic-flux compression in high-energy-density plasmas[J]. Physical Review Letters, 2009, 103: 215004. doi: 10.1103/PhysRevLett.103.215004
    [2] McBride R D, Slutz S A, Vesey R A, et al. Exploring magnetized liner inertial fusion with a semi-analytic model[J]. Physics of Plasmas, 2016, 23: 012705. doi: 10.1063/1.4939479
    [3] McBride R D, Slutz S A, Jennings C A, et al. Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator[J]. Physical Review Letters, 2012, 109: 135004. doi: 10.1103/PhysRevLett.109.135004
    [4] Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [5] Slutz S A, Gomez M R, Hansen S B, et al. Enhancing performance of magnetized liner inertial fusion at the Z facility[J]. Physics of Plasmas, 2018, 25: 112706. doi: 10.1063/1.5054317
    [6] 赵海龙, 肖波, 王刚华, 等. 磁化套筒惯性聚变研究进展[J]. 强激光与粒子束, 2020, 32:052001 doi: 10.11884/HPLPB202032.190357

    Zhao Hailong, Xiao Bo, Wang Ganghua, et al. Research progress of magnetized liner inertial fusion[J]. High Power Laser and Particle Beams, 2020, 32: 052001 doi: 10.11884/HPLPB202032.190357
    [7] 肖德龙, 王小光, 王冠琼, 等. 7~8 MA条件下MagLIF集成实验关键问题理论研究与设计[J]. 强激光与粒子束, 2023, 35:022001 doi: 10.11884/HPLPB202335.220253

    Xiao Delong, Wang Xiaoguang, Wang Guanqiong, et al. Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility[J]. High Power Laser and Particle Beams, 2023, 35: 022001 doi: 10.11884/HPLPB202335.220253
    [8] Gomez M R, Slutz S A, Jennings C A, et al. Performance scaling in magnetized liner inertial fusion experiments[J]. Physical Review Letters, 2020, 125: 155002. doi: 10.1103/PhysRevLett.125.155002
    [9] Slutz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Physical Review Letters, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
    [10] Chen Shijia, Yang Xiaohu, Wu Fuyuan, et al. Electrothermal effects on high-gain magnetized liner inertial fusion[J]. Plasma Physics and Controlled Fusion, 2021, 63: 115019. doi: 10.1088/1361-6587/ac234d
    [11] Velikovich A L, Giuliani J L, Zalesak S T. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma[J]. Physics of Plasmas, 2015, 22: 042702. doi: 10.1063/1.4916777
    [12] Amendt P, Cerjan C, Hamza A, et al. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums[J]. Physics of Plasmas, 2007, 14: 056312. doi: 10.1063/1.2716406
    [13] Dewald E L, Pino J E, Tipton R E, et al. Pushered single shell implosions for mix and radiation trapping studies using high-Z layers on National Ignition Facility[J]. Physics of Plasmas, 2019, 26: 072705. doi: 10.1063/1.5109426
    [14] Milovich J L, Amendt P, Marinak M, et al. Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs[J]. Physics of Plasmas, 2004, 11(4): 1552-1568. doi: 10.1063/1.1646161
    [15] Ramis R. One-dimensional Lagrangian implicit hydrodynamic algorithm for Inertial Confinement Fusion applications[J]. Journal of Computational Physics, 2017, 330: 173-191. doi: 10.1016/j.jcp.2016.11.011
    [16] Ramis R, Meyer-ter-Vehn J. MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations[J]. Computer Physics Communications, 2016, 203: 226-237. doi: 10.1016/j.cpc.2016.02.014
    [17] Kemp A J, Meyer-ter-Vehn J. An equation of state code for hot dense matter, based on the QEOS description[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 415(3): 674-676. doi: 10.1016/S0168-9002(98)00446-X
    [18] Eidmann K. Radiation transport and atomic physics modeling in high-energy-density laser-produced plasmas[J]. Laser and Particle Beams, 1994, 12(2): 223-244. doi: 10.1017/S0263034600007709
    [19] Murakami M, Meyer-ter-Vehn J, Ramis R. Thermal X-ray emission from ion-beam-heated matter[J]. Journal of X-Ray Science and Technology, 1990, 2(2): 127-148. doi: 10.3233/XST-1990-2204
    [20] Chen Shijia, Ma Yanyun, Wu Fuyuan, et al. Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum[J]. Chinese Physics B, 2021, 30: 115201. doi: 10.1088/1674-1056/ac01c2
    [21] 吴福源, 褚衍运, 叶繁, 等. Z箍缩动态黑腔形成过程MULTI程序一维数值模拟[J]. 物理学报, 2017, 66:215201 doi: 10.7498/aps.66.215201

    Wu Fuyuan, Chu Yanyun, Ye Fan, et al. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI[J]. Acta Physica Sinica, 2017, 66: 215201 doi: 10.7498/aps.66.215201
    [22] Braginskii S I. Transport processes in a plasma[M]//Leontovich M A. Reviews of Plasma Physics. New York: Consultants Bureau, 1965: 205-311.
    [23] 赵海龙, 王刚华, 肖波, 等. 磁化套筒惯性聚变中轴向磁场演化特征与Nernst效应影响[J]. 物理学报, 2021, 70:135201 doi: 10.7498/aps.70.20202215

    Zhao Hailong, Wang Ganghua, Xiao Bo, et al. Evolution characteristic of axial magnetic field and Nernst effect in magnetized liner inertial fusion[J]. Acta Physica Sinica, 2021, 70: 135201 doi: 10.7498/aps.70.20202215
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  110
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-26
  • 修回日期:  2024-06-27
  • 录用日期:  2024-06-27
  • 网络出版日期:  2024-07-08
  • 刊出日期:  2024-08-16

目录

    /

    返回文章
    返回