310 GHz compact receiver front-end based on Schottky diode
-
摘要: 肖特基混频器是固态太赫兹接收系统的关键部件,与基于超导体-绝缘体-超导体混频器、热电子辐射热计混频器的接收机相比,基于肖特基二极管混频器构建的太赫兹接收机系统不依赖低温附属设备,具有成本低、重量轻、体积小、功耗低等优点。目前基于肖特基二极管混频器构建的太赫兹接收前端结构相对复杂,集成度普遍不高且损耗较大。针对太赫兹接收前端结构复杂、集成度低、损耗大等问题,基于太赫兹肖特基二极管设计了288~318 GHz二次谐波混频器及其本振驱动链路,并基于此混频器构建了太赫兹接收机系统。太赫兹接收机本振驱动链路由一个75 GHz的六倍频功放集成模块与一个150 GHz二倍频模块组成。本振链路的集成化设计使得该接收机集成度大大提高,集成模块尺寸为20 mm×20 mm×43 mm,测试结果表明:在288~318 GHz带宽内,实测的双边带变频损耗为5.8~9.4 dB,噪声温度为1 055~1 722 K,具有良好的射频性能。Abstract: Schottky mixer is the key component of terahertz receiving system. Compared with the receiver based on SIS (superconductor-insulator-superconductor) mixer and HEB (hot-electron bolometer) mixer, the terahertz receiver system constructed on the basis of Schottky diode mixer does not rely on low-temperature accessory equipment, and it has the advantages of low cost, light weight, small volume and low power consumption. At present, the structure of terahertz receiver front-end based on Schottky diode mixer is relatively complex. To solve the problems of complex structure, low integration and high loss of terahertz receiver front-end, a 288−318 GHz sub-harmonic mixer based on Schottky diode and its local oscillation channel is proposed. Accordingly, a terahertz receiver system based on this mixer is constructed. The terahertz receiver’s local oscillation channel consists of a 75 GHz sextupler, a power amplifier integrated module and a 150 GHz frequency doubler. The integrated design of the local oscillator channel makes the receiver integration greatly improved. The overall size of the integrated module is 20 mm×20 mm×43 mm. The final test of the receiver shows that: in the bandwidth of 288−318 GHz, the double sideband conversion loss of the receiver is 5.8−9.4 dB, and the noise temperature is 1 055−1 722 K, which has good RF performance.
-
Key words:
- terahertz /
- Schottky diode /
- integration /
- mixer /
- receiver
-
表 1 太赫兹接收机性能对比
Table 1. Performance comparison of terahertz receivers
-
[1] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928. doi: 10.1109/22.989974 [2] Reck T, Jung-Kubiak C, Siles J V, et al. A silicon micromachined eight-pixel transceiver array for submillimeter-wave radar[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(2): 197-206. doi: 10.1109/TTHZ.2015.2397274 [3] Zhang Wen, Miao Wei, Ren Yuan, et al. Superconducting hot-electron bolometer mixers and their applications[J]. Superconductivity, 2022, 2: 100009. doi: 10.1016/j.supcon.2022.100009 [4] 王成, 陆彬, 缪丽, 等. 0.34 THz无线通信收发前端[J]. 强激光与粒子束, 2013, 25(6):1530-1534 doi: 10.3788/HPLPB20132506.1530Wang Cheng, Lu Bin, Miao Li, et al. 0.34 THz T/R front-end for wireless communication[J]. High Power Laser and Particle Beams, 2013, 25(6): 1530-1534 doi: 10.3788/HPLPB20132506.1530 [5] Cohn M, Degenford J E, Newman B A. Harmonic mixing with an anti-parallel diode pair[C]//S-MTT International Microwave Symposium Digest. 1974: 171-172. [6] Thomas B, Maestrini A, Beaudin G. A low-noise fixed-tuned 300-360-GHz sub-harmonic mixer using planar Schottky diodes[J]. IEEE Microwave and Wireless Components Letters, 2005, 15(12): 865-867. doi: 10.1109/LMWC.2005.859992 [7] 胡海帆, 马旭明, 马喆, 等. 220 GHz二次谐波混频器集成模块[J]. 红外与激光工程, 2021, 50:20210078 doi: 10.3788/IRLA20210078Hu Haifan, Ma Xuming, Ma Zhe, et al. 220 GHz sub-harmonic mixer integrated module[J]. Infrared and Laser Engineering, 2021, 50: 20210078 doi: 10.3788/IRLA20210078 [8] Min Wenchao, Sun Hao, Zhang Qilian, et al. A high-performance W-band subharmonic mixer based on anti-parallel diode pair[J]. Chinese Journal of Electron Devices, 2016, 39(6): 1283-1286. [9] 刘戈, 张波, 张立森, 等. 基于二极管3D精确模型的0.42 THz分谐波混频器[J]. 红外与毫米波学报, 2018, 37(3):338-343Liu Ge, Zhang Bo, Zhang Lisen, et al. 0.42 THz subharmonic mixer based on 3D precisely modeled diode[J]. Journal of Infrared and Millimeter Waves, 2018, 37(3): 338-343 [10] Liu Yang, Zhang Bo, Feng Yinian, et al. Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array[J]. Applied Sciences, 2020, 10: 7924. doi: 10.3390/app10217924 [11] Feng Wei, Yang Penglin, Sun Xuechun, et al. Development of 0.34 THz sub-harmonic mixer combining two-stage reduced matching technology with an improved active circuit model[J]. Applied Sciences, 2022, 12: 12855. doi: 10.3390/app122412855 [12] Guo Cheng, Shang Xiaobang, Lancaster M J, et al. A 290-310GHz single sideband mixer with integrated waveguide filters[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(4): 446-454. doi: 10.1109/TTHZ.2018.2841771 [13] Liu Jun, He Wei, Qiao Haidong, et al. The study and application of D-band radiometer front-end[J]. Journal of Infrared and Millimeter Waves, 2020, 39(6): 704-708. [14] 凌清岚, 姚常飞, 张炎. 330GHz集成化收发组件的设计与实现[J/OL]. 微波学报, 1-6[2024-03-19]. http://kns.cnki.net/kcms/detail/32.1493.TN.20231213.1716.014.htmlLing Qinglan, Yao Changfei, Zhang Yan. Design and implementation of 330 GHz integrated T/R module[J/OL]. Journal of Microwaves, 1-6[2024-03-19]. http://kns.cnki.net/kcms/detail/32.1493.TN.20231213.1716.014.html. [15] 陆彬, 崔博华. 太赫兹波导滤波器的分析与设计[J]. 强激光与粒子束, 2013, 25(6):1527-1529 doi: 10.3788/HPLPB20132506.1527Lu Bin, Cui Bohua. Analysis and design of terahertz waveguide filter[J]. High Power Laser and Particle Beams, 2013, 25(6): 1527-1529 doi: 10.3788/HPLPB20132506.1527 [16] Thomas B, Rea S, Moyna B, et al. A 320-360 GHz subharmonically pumped image rejection mixer using planar Schottky diodes[J]. IEEE Microwave and Wireless Components letters, 2009, 19(2): 101-103. doi: 10.1109/LMWC.2008.2011332 [17] Ai Caijie, Zhang Yong, Chen Zhongfei. Design and test of 0.33THz receiver front-end[C]//2015 IEEE International Conference on Communication Problem-Solving (ICCP). 2015: 215-217. -