Circuit topology optimization and performance improvement of magnetic resistance coil launcher
-
摘要: 为提高线圈发射器的发射速度及能量利用率,研究了磁阻型电磁线圈发射器不同放电电路结构对发射性能的影响。对晶闸管式(SCR)、半桥式、阻容(RCD)吸收式、Boost-Buck式四种不同结构放电电路进行分析,使用有限元方法研究了四种电路对发射性能的影响。结果表明,相同条件下,相比SCR式电路,三种可关断电路中,Boost-Buck式电路下电枢出口速度提升最少,为78.77%;RCD式电路下系统能量利用率提升最少,为220.66%。可关断电路中电流的衰减速率会影响电枢的加速度,存在最优电流衰减速率曲线;单级可关断电路中出口速度与系统能量利用率搭配最均衡的为半桥式放电电路;Boost-Buck式放电电路更具灵活性,更适合应用于多级线圈发射器中。Abstract: To improve the muzzle speed and energy utilization of the coil launcher, this article studies the impact of different circuit topology structures of the magnetic resistance electromagnetic coil launcher to improve the performance. Four topology structures, including silicon controlled rectifier (SCR) type, half-bridge type, resistor capacitor diode (RCD) absorption type, and boost-buck type, are analyzed, and the influence of different topology on the performance is studied by finite element method. The results show that under the same conditions, compared with the SCR circuit, among the three switchable circuits, the boost-buck circuit has the least increase in armature muzzle speed, which is 78.77%; the RCD circuit has the least increase in system energy utilization, which is 220.66%. The attenuation rate of the current in the turn-off circuit will affect the acceleration of the armature, and there is an optimal current attenuation rate curve. The one with the most balanced combination of muzzle speed and system energy utilization in the single-stage turn-off circuits is the half-bridge discharge circuit; boost-buck discharge circuit is more flexible and suitable for use in multi-stage coil launcher.
-
表 1 电路开关类型及电路功能
Table 1. Circuit switch types and circuit functions
circuit switchability switch type switch number required energy recovery SCR type discharge circuit non-switchable semi-controlled 1 unrecoverable half-bridge type discharge circuit switchable full control 2 recoverable RCD absorption type discharge circuit switchable full control 1 unrecoverable boost-buck type discharge circuit switchable full control 2 recoverable 表 2 磁阻型电磁线圈发射器模型参数
Table 2. Parameters of reluctance electromagnetic coil launcher
capacitor
voltage/Vcapacitor
capacitance/
mFdrive
coil
turnsdrive coil
thickness/
mmdrive coil
length/
mmequivalent
resistance of
drive coil/mΩequivalent
inductance of
drive coil/mHarmature
diameter/
mmarmature
length/
mmarmature
quality/
kgarmature
material2100 4.7 45 62.5 120 6.2 0.25 120 120 10.68 steel-1008 表 3 均匀实验法下发射器最佳参数
Table 3. Optimal parameters of transmitter under uniform design method
discharge circuit best trigger position/mm delay time/ms SCR type −115 − half-bridge type −129 14 RCD absorption type −131 15 boost-buck type −134 16 表 4 发射器能量利用率
Table 4. Energy utilization of transmitter
discharge circuit muzzle speed/(m·s−1) relative SCR circuit muzzle speed
improvement ratio/%efficiency/% relative SCR circuit efficiency
improvement ratio/%SCR type 9.61 — 4.84 — half-bridge type 17.27 79.71 18.63 284.92 RCD absorption type 17.21 79.08 15.52 220.66 boost-buck type 17.18 78.77 16.89 248.97 -
[1] 马伟明, 鲁军勇. 电磁发射技术的研究现状与挑战[J]. 电工技术学报, 2023, 38(15):3943-3959Ma Weiming, Lu Junyong. Research progress and challenges of electromagnetic launch technology[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 3943-3959 [2] 张红旭. 多级磁阻型电磁枪发射效率研究[D]. 南京: 南京理工大学, 2019Zhang Hongxu. Study on the firing efficiency of multistage reluctance electromagnetic gun[D]. Nanjing: Nanjing University of Science and Technology, 2019 [3] 关晓存, 李治源, 赵然, 等. 线圈炮电枢电磁-热耦合仿真分析[J]. 强激光与粒子束, 2011, 23(8):2267-2272 doi: 10.3788/HPLPB20112308.2267Guan Xiaocun, Li Zhiyuan, Zhao Ran, et al. Simulation analysis of electromagnetic-thermal coupling for armature in inductive coilgun[J]. High Power Laser and Particle Beams, 2011, 23(8): 2267-2272 doi: 10.3788/HPLPB20112308.2267 [4] 李超, 鲁军勇, 江汉红, 等. 电磁发射用多级混合储能充电方式对比[J]. 强激光与粒子束, 2015, 27:075005 doi: 10.11884/HPLPB201527.075005Li Chao, Lu Junyong, Jiang Hanhong, et al. Comparison of charging methods of multilevel hybrid energy storage for electromagnetic launch[J]. High Power Laser and Particle Beams, 2015, 27: 075005 doi: 10.11884/HPLPB201527.075005 [5] 穆泽渊, 张军, 黄莹倍. 基于IGCT的单级磁阻型线圈发射器的效率研究[J]. 弹道学报, 2020, 32(3):91-96 doi: 10.12115/j.issn.1004-499X(2020)03-017Mu Zeyuan, Zhang Jun, Huang Yingbei. Study on efficiency of single-stage reluctance coil launcher based on IGCT[J]. Journal of Ballistics, 2020, 32(3): 91-96 doi: 10.12115/j.issn.1004-499X(2020)03-017 [6] 孙鹏, 雷彬, 李治源, 等. 电磁发射复合型结构拦截弹的3维电磁场有限元建模与仿真[J]. 强激光与粒子束, 2011, 23(10):2811-2816 doi: 10.3788/HPLPB20112310.2811Sun Peng, Lei Bin, Li Zhiyuan, et al. Finite element analysis on 3-D electromagnetic field of electromagnetic launching composite intercepting projectile[J]. High Power Laser and Particle Beams, 2011, 23(10): 2811-2816 doi: 10.3788/HPLPB20112310.2811 [7] 徐麟, 张军, 董健年. 一种单兵电磁武器发射过程仿真研究[J]. 弹道学报, 2017, 29(3):92-96 doi: 10.3969/j.issn.1004-499X.2017.03.016Xu Lin, Zhang Jun, Dong Jiannian. Simulation on launching process of individual electromagnetic weapon[J]. Journal of Ballistics, 2017, 29(3): 92-96 doi: 10.3969/j.issn.1004-499X.2017.03.016 [8] 杨保成, 韩俊峰. 基于均匀试验法的电磁线圈发射关键参数优化[J/OL]. 北京航空航天大学学报, 2023: 1-8. https://doi.org/10.13700/j.bh.1001-5965.2023.0040Yang Baocheng, Han Junfeng. Optimization of key parameters of electromagnetic coil vertical launching based on uniform design method[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2023: 1-8. https://doi.org/10.13700/j.bh.1001-5965.2023.0040. [9] Kim S, Kim J. An electromagnetic circuit design to improve a multi-stage coil-gun’s energy conversion efficiency[J]. Applied Sciences, 2022, 12(18): 8942. doi: 10.3390/app12188942 [10] Deng Huimin, Wang Yu, Lu Falong, et al. Optimization of reluctance accelerator efficiency by an improved discharging circuit[J]. Defence Technology, 2020, 16(3): 662-667. doi: 10.1016/j.dt.2019.08.013 [11] Lu Mengkun, Zhang Junhong, Yi Xianglie. A reverse electromagnetic force suppression circuit and its control method for reluctance coil-gun[J]. IEEE Transactions on Plasma Science, 2023, 51(4): 1196-1203. doi: 10.1109/TPS.2023.3251966 [12] Sovik G B, Halivni B, Evzelman M, et al. Electromagnetic propulsion system with rapid current discharge circuit for enhanced projectile acceleration[C]//Proceedings of the 2022 IEEE 23rd Workshop on Control and Modeling for Power Electronics (COMPEL). 2022: 1-6. [13] Zhao Jiaqi, Li Haitao, Zhao Bo, et al. An improved pulsed power supply circuit for reluctance electromagnetic launcher based on bridge-type capacitor circuit[J]. IEEE Transactions on Plasma Science, 2023, 51(5): 1351-1356. doi: 10.1109/TPS.2023.3265933 [14] 王莹, 肖峰. 电炮原理[M]. 北京: 国防工业出版社, 1995Wang Ying, Xiao Feng. Principles of electomagnetic guns[M]. Beijing: National Defense Industry Press, 1995 [15] 张军, 张犁, 成瑜. IGBT模块寿命评估研究综述[J]. 电工技术学报, 2021, 36(12):2560-2575Zhang Jun, Zhang Li, Cheng Yu. Review of the lifetime evaluation for the IGBT module[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2560-2575 [16] 刘战伟, 陈喜民, 董杰, 等. 小型霍普金森杆多级电磁发射系统的优化[J]. 实验力学, 2015, 30(1):9-16 doi: 10.7520/1001-4888-14-103Liu Zhanwei, Chen Ximin, Dong Jie, et al. The optimization of multistage electromagnetic launching system of Mini-SHB[J]. Journal of Experimental Mechanics, 2015, 30(1): 9-16 doi: 10.7520/1001-4888-14-103 [17] Li Z Y, Shen Y L, Li H R, et al. Study of the influence of electrical parameters on launch performance of projectile from the single-stage reluctance coil launcher[J]. Journal of Physics: Conference Series, 2020, 1507: 082035. doi: 10.1088/1742-6596/1507/8/082035 [18] 何东欣, 张涛, 陈晓光, 等. 脉冲电压下电力电子装备绝缘电荷特性研究综述[J]. 电工技术学报, 2021, 36(22):4795-4808He Dongxin, Zhang Tao, Chen Xiaoguang, et al. Research overview on charge characteristics of power electronic equipment insulation under the pulse voltage[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4795-4808 [19] Daldaban F, Sari V. The optimization of a projectile from a three-coil reluctance launcher[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2016, 24(4): 2771-2788. [20] Daldaban F, Sarı V. Bir relüktans firlaticinin sonlu elemanlar yöntemi̇ i̇le i̇ncelenmesi̇[J]. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 2015, 30(4): 605-614.Daldaban F, Sarı V. Bir relüktans firlaticinin sonlu elemanlar yöntemi̇ i̇le i̇ncelenmesi̇[J]. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 2015, 30(4): 605-614. (Daldaban F, Sari V. Analysis of a reluctance launcher by finite elements method[J]. Journal of the Faculty of Engineering and Architecture of Gazi University, 2015, 30(4): 605-614