留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相位恢复的透明样本3维重建系统

曹皓月 赵晨 刘静 彭贺 周扬 杨树蔚 马悦 卢奕冰

曹皓月, 赵晨, 刘静, 等. 基于相位恢复的透明样本3维重建系统[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240128
引用本文: 曹皓月, 赵晨, 刘静, 等. 基于相位恢复的透明样本3维重建系统[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240128
Cao Haoyue, Zhao Chen, Liu Jing, et al. Three-dimensional reconstruction system for transparent samples based on phase retrieval[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240128
Citation: Cao Haoyue, Zhao Chen, Liu Jing, et al. Three-dimensional reconstruction system for transparent samples based on phase retrieval[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240128

基于相位恢复的透明样本3维重建系统

doi: 10.11884/HPLPB202436.240128
基金项目: 陕西省教育厅2023年度一般专项科学研究计划项目(23JK0586);陕西省自然科学基础研究计划项目(2018JQ2075)
详细信息
    作者简介:

    曹皓月,1169357386@qq.com

    通讯作者:

    赵 晨,2509290826@qq.com

  • 中图分类号: O436

Three-dimensional reconstruction system for transparent samples based on phase retrieval

  • 摘要: 为解决传统显微成像技术难以获取无色透明样本结构和厚度的问题,设计了一款小型透明样本3维重建系统。该系统通过对透明样本进行相位恢复,实现3维重建。系统的设计突破了传统光学结构,只需输入携带样本信息的光线,经过分光棱镜分成两路,终由双目相机捕获。系统使用3D打印制作,尺寸仅为110 mm×110 mm×60 mm,成本低廉,并可与传统显微成像设备配合使用。系统内置自动对焦和视场配准算法,只需采集1张过焦和1张欠焦图像,通过求解光强传输方程便可进行相位恢复,从而实现透明样本的3维重建。测试结果显示,10倍物镜下系统的成像分辨率可达2.46 μm,同时相位恢复精确度也能达到基本要求。系统成功对血细胞和载玻片划痕进行了3维重建,证明了系统的可行性与实用性。
  • 图  1  TIE方程相位恢复流程

    Figure  1.  TIE equation phase recovery process

    图  2  系统总体设计

    Figure  2.  General system design

    图  3  系统详细组成

    Figure  3.  Detailed composition of the system

    图  4  3维重建成像平台

    Figure  4.  Three-dimensional reconstruction imaging platform

    图  5  相位恢复软件设计界面及流程图

    Figure  5.  Phase recovery software design interface and flow chart: (a) phase recovery software interface; (b) software flow pattern

    图  6  视场配准效果图

    Figure  6.  Field of view registration effect diagram

    图  7  系统测试结果图

    Figure  7.  System test result diagram

    (a) resolution plate under 10 times objective lens; (b) defocus image of random phase plate; (c) phase image and local z-axis section curve

    图  8  血细胞观测实验结果图

    Figure  8.  Results of blood cell observation experiment

    (a) original images; (b) overfocus image after correction; (c) underfocus image after correction (d) infocus image (e) phase image (f) 3D reconstruction result

    图  9  载玻片划痕观测实验结果图

    Figure  9.  The experimental results of glass slide scratch observation

    (a) original images; (b) overfocus image after correction; (c) underfocus image after correction; (d) infocus image; (e) phase image; (f) 3D reconstruction result

    表  1  CMOS相机参数表

    Table  1.   CMOS camera parameter table

    indexes parameter
    model VEN-134-90U3M-D
    transmission mode USB3.0
    resolution 1280×1024×2
    frames per second 90 Hz
    pixel dimension 4.8 μm×4.8 μm
    下载: 导出CSV
  • [1] 左超, 陈钱. 计算光学成像: 何来, 何处, 何去, 何从?[J]. 红外与激光工程, 2022, 51:20220110 doi: 10.3788/IRLA20220110

    Zuo Chao, Chen Qian. Computational optical imaging: an overview[J]. Infrared and Laser Engineering, 2022, 51: 20220110 doi: 10.3788/IRLA20220110
    [2] Jiang Fuda, Zhang Chonglei. High accuracy quantitative phase imaging based on transport-of-intensity equation[J]. Optics and Lasers in Engineering, 2023, 169: 107700. doi: 10.1016/j.optlaseng.2023.107700
    [3] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 2018, 12(10): 578-589. doi: 10.1038/s41566-018-0253-x
    [4] Zuo Chao, Li Jiaji, Sun Jiasong, et al. Transport of intensity equation: a tutorial[J]. Optics and Lasers in Engineering, 2020, 135: 106187. doi: 10.1016/j.optlaseng.2020.106187
    [5] 何璇. 明场、暗场、相衬的多模显微镜成像技术研究[D]. 成都: 电子科技大学, 2017

    He Xuan. Research on multi-mode microscopy imaging technology of brightfield, darkfield, phase contrast[D]. Chengdu: University of Electronic Science and Technology of China, 2017
    [6] Trattner S, Kashdan E, Feigin M, et al. Image formation of thick three-dimensional objects in differential-interference-contrast microscopy[J]. Journal of the Optical Society of America A, 2014, 31(5): 968-980. doi: 10.1364/JOSAA.31.000968
    [7] 左超, 陈钱, 孙佳嵩, 等. 基于光强传输方程的非干涉相位恢复与定量相位显微成像: 文献综述与最新进展[J]. 中国激光, 2016, 43:0609002 doi: 10.3788/CJL201643.0609002

    Zuo Chao, Chen Qian, Sun Jiasong, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: a review[J]. Chinese Journal of Lasers, 2016, 43: 0609002 doi: 10.3788/CJL201643.0609002
    [8] 桂博瀚, 李常伟. 基于波面分割及多平面相位恢复的定量相位成像技术[J]. 光学学报, 2023, 43:1411002 doi: 10.3788/AOS230451

    Gui Bohan, Li Changwei. Quantitative phase imaging technology based on wavefront segmentation and multiplane phase retrieval[J]. Acta Optica Sinica, 2023, 43: 1411002 doi: 10.3788/AOS230451
    [9] 张赵. 基于光强传输方程的相位恢复与多模式成像研究[D]. 南京: 南京理工大学, 2017

    Zhang Zhao. Phase retrieval and multi-mode imaging based on light intensity transfer equation[D]. Nanjing: University of Nanjing University of Science and Technology, 2017
    [10] Cheng Hong, Wang Jincheng, Gao Yaoli, et al. Phase unwrapping based on transport-of-intensity equation with two wavelengths[J]. Optical Engineering, 2019, 58: 054103.
    [11] Grant S D, Richford K, Burdett H L, et al. Low-cost, open-access quantitative phase imaging of algal cells using the transport of intensity equation[J]. Royal Society Open Science, 2020, 7: 191921. doi: 10.1098/rsos.191921
    [12] Chen Chao, Lu Y Yunan, Huang Huachuan, et al. PhaseRMiC: phase real-time microscope camera for live cell imaging[J]. Biomedical Optics Express, 2021, 12(8): 5261-5271. doi: 10.1364/BOE.430115
    [13] Liu Cheng, Wang Shouyu, Veetil S P. Computational optical phase imaging[M]. Singapore: Springer, 2022.
    [14] Carney S, Khoo T C, Sheikhsofla A, et al. Quantitative phase imaging comparison of digital holographic microscopy and transport of intensity equation phase through simultaneous measurements of live cells[J]. Optics and Lasers in Engineering, 2023, 166: 107581. doi: 10.1016/j.optlaseng.2023.107581
    [15] Wang Shouyu, Huang Huachuan, Sun Aihui, et al. Dual-view transport of intensity phase imaging devices for quantitative phase microscopy applications[J]. Sensors & Diagnostics, 2024, 3(3): 381-394.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  13
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-16
  • 修回日期:  2024-07-01
  • 录用日期:  2024-06-23
  • 网络出版日期:  2024-07-09

目录

    /

    返回文章
    返回