Generation and mitigation of electromagnetic pulses from pulsed intense magnetic field device in laser plasma experiments
-
摘要: 脉冲强磁场在高功率激光与物质相互作用领域有着重要的作用。报导了用于激光等离子体实验的脉冲强磁场设备产生的电磁干扰的空间和频谱分布特征以及屏蔽方法的实验结果。发现电磁干扰来自于脉冲强磁场设备的放电主回路、充电和接地的次级回路。这些电磁干扰主要通过电容性耦合进入真空靶室、进而通过传导型耦合途径从靶室进入电子设备,或通过充电线和接地线进入电网或弱电电缆、最终进入电子设备,部分电磁辐射通过自由空间传输方式耦合进电缆和电子设备。通过断开传导型耦合路径和屏蔽自由空间电磁辐射等途径来消弱电磁干扰,对比实验发现这些措施对抑制电磁干扰有明显的效果。这些结果可以应用于强磁场调控激光等离子体的实验研究。Abstract: Pulsed intense magnetic fields play an important role in the field of high power laser material interaction, while the electromagnetic pulse generated by pulsed intense magnetic field devices will disturb the signal measurement in laser plasma experiment. We measured the spatial distribution and spectral characteristics of electromagnetic pulse using Rogowski coils, high-voltage probes, antennas, and sampling resistors on the laser plasma experimental platform. It is found that the electromagnetic pulses come from the main discharge circuit of the pulsed intense magnetic field device, and the secondary circuit of charging and grounding. The electromagnetic pulses transform onto the vacuum target chamber through capacitive coupling between the transmission line and the flange on the vacuum target chamber that places the transmission line, and then enter the electronic devices through conductive coupling pathways, or enter the power grid or weak current cables through charging lines and grounding wires, and finally enter the electronic devices. Part of the free space electromagnetic pulse is directly coupled into cables and electronic devices. We depress the electromagnetic noise that enters the detector by disconnecting the conductive coupling path and shielding free space electromagnetic pulse. Experiments showed that the measured electromagnetic pulse amplitude, especially at the 0.14 MHz discharge main frequency component, was well suppressed, by physically disconnecting the electrical connection between the power grid and electronic equipment. Isolating the high-voltage power supply from the low-voltage grounding connection can decrease the electromagnetic noise markedly. Shielding shell and shielding cabinet that cover the electronic devices are available approaches to depress the free space and conductive coupled electromagnetic noise.
-
图 8 (a)靶室上测量电磁干扰的位置示意图,(b)靶室上不同位置的电压抖动幅度与相对于脉冲磁场设备安装法兰距离的关系
Figure 8. (a) Schematic diagram of measurement points on vacuum target chamber, (b) the relationship between the amplitude of voltage variation on the vacuum target chamber and the distance from the flange that places the pulsed magnetic field device
表 1 不同位置测量的电磁干扰的频谱与幅值
Table 1. Spectrum and amplitude of electromagnetic pulse measured at different positions
amplitude frequency (<1 MHz) frequency (1~10 MHz) frequency (10~25 MHz) main discharge
circuit (source)33 kA 0.14 MHz 0.5 MHz − − − − − − high-voltage ground
connection (source)1.7 kV 0.14 MHz 0.5 MHz − − 5 MHz − 18.4 MHz 22 MHz basement free space
electromagnetic
pulse (source)− − − − − − 13MHz − − target chamber 46~90 V 0.14 MHz
conductive0.5 MHz
conductive2.5 MHz
conductive3.7 MHz
conductive5 MHz
conductive14 MHz
conductive− − west optical platform 20~30 V 0.14 MHz
conductive0.5 MHz
conductive2.5 MHz
conductive− − − − − north optical platform 15~22 V 0.14 MHz
conductive0.5 MHz
conductive2.5 MHz
conductive− − 14 MHz
conductive− − small optical platform 10~18 V − − − − 5 MHz
radiation− 18.4 MHz
radiation22 MHz
radiationsouth optical platform 5~12 V 0.14 MHz
conductive0.5 MHz
conductive2.5 MHz
conductive− − − − − laser platform 3~5 V − 0.5 MHz
conductive2.5 MHz
conductive− − − − − low-voltage ground
connection4~10 V 0.14 MHz
conductive
radiation0.5 MHz
conductive
radiation− − − − − − -
[1] Chang P Y, Fiksel G, Hohenberger M, et al. Fusion yield enhancement in magnetized laser-driven implosions[J]. Physical Review Letters, 2011, 107: 035006. doi: 10.1103/PhysRevLett.107.035006 [2] Gong Tao, Zheng Jian, Li Zhichao, et al. Mitigating stimulated scattering processes in gas-filled Hohlraums via external magnetic fields[J]. Physics of Plasmas, 2015, 22: 092706. doi: 10.1063/1.4931077 [3] Schaeffer D B, Fox W, Haberberger D, et al. Generation and evolution of high-Mach-number laser-driven magnetized collisionless shocks in the laboratory[J]. Physical Review Letters, 2017, 119: 025001. doi: 10.1103/PhysRevLett.119.025001 [4] Burris-Mog T, Harres K, Nürnberg F, et al. Laser accelerated protons captured and transported by a pulse power solenoid[J]. Physical Review Accelerators and Beams, 2011, 14: 121301. doi: 10.1103/PhysRevSTAB.14.121301 [5] Gotchev O V, Chang P Y, Knauer J P, et al. Laser-driven magnetic-flux compression in high-energy-density plasmas[J]. Physical Review Letters, 2009, 103: 215004. doi: 10.1103/PhysRevLett.103.215004 [6] Fiksel G, Agliata A, Barnak D, et al. Note: experimental platform for magnetized high-energy-density plasma studies at the omega laser facility[J]. Review of Scientific Instruments, 2015, 86: 016105. doi: 10.1063/1.4905625 [7] Albertazzi B, Béard J, Ciardi A, et al. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields[J]. Review of Scientific Instruments, 2013, 84: 043505. doi: 10.1063/1.4795551 [8] Wang Yulin, Hu Guangyue, Hu Peng, et al. Compact pulsed intense magnetic field generator for Shenguang-II upgrade laser facility[J]. Journal of Instrumentation, 2019, 14: P09024. doi: 10.1088/1748-0221/14/09/P09024 [9] Hu Peng, Zhao Jiayi, Wang Jincan, et al. Upgraded pulsed magnetic field generator for Shenguang-II laser facility toward 30 T[J]. Journal of Instrumentation, 2022, 17: P07036. doi: 10.1088/1748-0221/17/07/P07036 [10] Hu Guangyue, Liang Yihan, Song Falun, et al. A 7 T pulsed magnetic field generator for magnetized laser plasma experiments[J]. Plasma Science and Technology, 2015, 17(2): 134-140. doi: 10.1088/1009-0630/17/2/07 [11] Wang Yulin, Hu Guangyue, Hu Peng, et al. Portable pulsed magnetic field generator for magnetized laser plasma experiments in low vacuum environments[J]. Review of Scientific Instruments, 2019, 90: 075108. doi: 10.1063/1.5095541 [12] Hu Peng, Hu Guangyue, Wang Yulin, et al. Pulsed magnetic field device for laser plasma experiments at Shenguang-Ⅱ laser facility[J]. Review of Scientific Instruments, 2020, 91: 014703. doi: 10.1063/1.5139613 [13] Yang Ming, Li Tingshuai, Wang Chuanke, et al. Characterization of electromagnetic pulses via arrays on ShenGuang-III laser facility laser[J]. Chinese Optics Letters, 2016, 14: 101402. doi: 10.3788/COL201614.101402 [14] Xu Yilin, Li Dongyu, Xia Yadong, et al. Analysis of electromagnetic pulses generated from ultrashort laser irradiation of solid targets at CLAPA[J]. Chinese Physics B, 2022, 31: 025205. doi: 10.1088/1674-1056/ac3735 [15] Zhang Guangjin, Xia Yadong, Yi Tao, et al. Generation of electromagnetic impulse from laser irradiating targets and its propagation in the laser facility[J]. Fusion Engineering and Design, 2019, 141: 21-24. doi: 10.1016/j.fusengdes.2019.02.059 [16] Yang Yu, Guo Xiaodong, Li Zihao, et al. Intense electromagnetic pulses generated from kJ-laser interacting with hohlraum targets[J]. IEEE Transactions on Nuclear Science, 2022, 69(9): 2027-2036. doi: 10.1109/TNS.2022.3187569 [17] Yang Ming, Yang Yongmei, Li Tingshuai, et al. Electromagnetic radiations from laser interaction with gas-filled hohlraum[J]. Laser Physics Letters, 2018, 15: 016101. doi: 10.1088/1612-202X/aa94ec [18] Yang Yongmei, Yi Tao, Yang Ming, et al. Effect of target size on electromagnetic pulses generation from laser radiation with targets[J]. Laser Physics, 2019, 29: 016003. doi: 10.1088/1555-6611/aaf22a [19] Xia Yadong, Zhang Feng, Cai Hongbo, et al. Analysis of electromagnetic pulses generation from laser coupling with polymer targets: Effect of metal content in target[J]. Matter and Radiation at Extremes, 2020, 5: 017401. doi: 10.1063/1.5114663 [20] He Q Y, Deng Z G, Meng L B, et al. Generation and regulation of electromagnetic pulses induced by hybrid laser pulses interacting with solid targets[J]. Nuclear Fusion, 2022, 62: 066006. doi: 10.1088/1741-4326/ac54cf [21] Xia Yadong, Li Dongyu, Zhang Siyuan, et al. Enhancing electromagnetic radiations by a pre-ablation laser during laser interaction with solid target[J]. Physics of Plasmas, 2020, 27: 032705. doi: 10.1063/1.5140585 [22] He Qiangyou, Kang Ning, Ren Lei, et al. Spatial and temporal evolution of electromagnetic pulses generated at Shenguang-II series laser facilities[J]. Plasma Science and Technology, 2021, 23: 115202. doi: 10.1088/2058-6272/ac21b7 [23] Yang Jinwen, Li Tingshuai, Yi Tao, et al. Electromagnetic pulses generated from laser target interactions at Shenguang II laser facility[J]. Plasma Science and Technology, 2016, 18(10): 1044-1048. doi: 10.1088/1009-0630/18/10/13 [24] Consoli F, Tikhonchuk V T, Bardon M, et al. Laser produced electromagnetic pulses: generation, detection and mitigation[J]. High Power Laser Science and Engineering, 2020, 8: e22. doi: 10.1017/hpl.2020.13 [25] 易涛, 景峰, 王新彬, 等. 神光Ⅲ装置电磁脉冲测量[J]. 安全与电磁兼容, 2017(6):83-85Yi Tao, Jing Feng, Wang Xinbin, et al. Electromagnetic pulse measurement at ShenGuang III laser facility[J]. Safety & EMC, 2017(6): 83-85 [26] 易涛, 郑万国, 江少恩. 高功率激光装置电磁兼容设计[J]. 安全与电磁兼容, 2019(1):89-92Yi Tao, Zheng Wanguo, Jiang Shaoen. EMC design of high power laser facility experiments[J]. Safety & EMC, 2019(1): 89-92 [27] 何勇, 陈德怀, 林福昌, 等. 强激光脉冲电源电磁干扰的仿真与测试[J]. 强激光与粒子束, 2005, 17(6):921-924He Yong, Chen Dehuai, Lin Fuchang, et al. Simulation and measurement of electromagnetic interference in a pulsed supply of high power laser[J]. High Power Laser and Particle Beams, 2005, 17(6): 921-924 [28] 杨正华, 刘慎业, 肖绍球, 等. 神光Ⅲ原型装置靶室电磁干扰测量与分析[J]. 核电子学与探测技术, 2015, 35(2):210-214Yang Zhenghua, Liu Shenye, Xiao Shaoqiu, et al. Research of electric field pulse of Shenguang Ⅲ prototype laser facility target chamber[J]. Nuclear Electronics & Detection Technology, 2015, 35(2): 210-214 [29] 邱永峰. 高功率脉冲驱动源控制系统及电磁兼容性研究[D]. 长沙: 国防科技大学, 2018: 28-43Qiu Yongfeng. Investigation of control system and EMC based on high power pulse generator[D]. Changsha: National University of Defense Technology, 2018: 28-43 [30] 罗晓珊. 强流脉冲环境下的辐射干扰及抑制措施研究[D]. 武汉: 华中科技大学, 2014: 1-10Luo Xiaoshan. The research on the radiation interference and suppression measures in intense pulse current environment[D]. Wuhan: Huazhong University of Science and Technology, 2014: 1-10 [31] 路宏敏, 赵晓凡, 谭康伯, 等. 工程电磁兼容[M]. 3版. 西安: 西安电子科技大学出版社, 2019Lu Hongmin, Zhao Xiaofan, Tan Kangbo, et al. Engineering electromagnetic compatibility[M]. 3rd ed. Xi’an: Xidian University Press, 2019 [32] 赵佳羿, 胡鹏, 王雨林, 等. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈[J]. 物理学报, 2021, 70:165202 doi: 10.7498/aps.70.20210441Zhao Jiayi, Hu Peng, Wang Yulin, et al. Optimization of pulsed intense magnetic field device for laser plasma experiment via inductively coupled coil[J]. Acta Physica Sinica, 2021, 70: 165202 doi: 10.7498/aps.70.20210441