留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属微结构表面增强激光诱导击穿光谱的强度与稳定性

祁言兵 汤家原 姜蒙恩 周卫东

祁言兵, 汤家原, 姜蒙恩, 等. 金属微结构表面增强激光诱导击穿光谱的强度与稳定性[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240144
引用本文: 祁言兵, 汤家原, 姜蒙恩, 等. 金属微结构表面增强激光诱导击穿光谱的强度与稳定性[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240144
Qi Yanbing, Tang Jiayuan, Jiang Meng’en, et al. Spectral intensity and stability of surface-enhanced laser-induced breakdown spectroscopy of metallic microstructure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240144
Citation: Qi Yanbing, Tang Jiayuan, Jiang Meng’en, et al. Spectral intensity and stability of surface-enhanced laser-induced breakdown spectroscopy of metallic microstructure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240144

金属微结构表面增强激光诱导击穿光谱的强度与稳定性

doi: 10.11884/HPLPB202436.240144
基金项目: 国家自然科学基金项目(61975186)
详细信息
    作者简介:

    祁言兵,1913735276@qq.com

    通讯作者:

    周卫东,wdzhou@zjnu.com

  • 中图分类号: O433.5

Spectral intensity and stability of surface-enhanced laser-induced breakdown spectroscopy of metallic microstructure

  • 摘要: 在金属铝表面用飞秒激光分别刻蚀了四种形状的微结构,对比分析了周期不同的矩形、圆形、三角形和六边形微结构对沉积在其表面Cr元素水溶液的表面增强激光诱导击穿光谱(LIBS)光谱强度和稳定性的影响。研究结果表明微结构的周期越小,光谱增强效果越显著,其中矩形微结构在相同周期下表现出最优光谱增强效果,相比于未处理的金属铝,其光谱强度增强了4倍左右。此外,六边形微结构的光谱稳定性最佳,具有良好的可重复性。研究结果为今后采用表面增强LIBS法检测水溶液中的重金属元素提供了一种可行的基底制备方法。
  • 图  1  LIBS实验装置示意图

    Figure  1.  Schematic diagram of the LIBS experimental setup

    图  2  样品烧蚀区域示意图

    Figure  2.  Schematic diagram of sample ablation area

    图  3  铝金属基板LIBS光谱

    Figure  3.  LIBS spectrum of aluminum metal substrate

    图  4  铝表面的光学显微三维图

    Figure  4.  Optical microscopic three-dimensional images of aluminum surface

    图  5  金属(铝)表面Cr元素LIBS光谱强度随微结构形状和周期的变化规律

    Figure  5.  Variation pattern of Cr element LIBS spectral intensity on the metal (aluminum) surface with different microstructure shapes and cycles

    图  6  四种微结构铝表面下LIBS光谱的RSD随微结构周期的变化规律(铝)

    Figure  6.  Variation trend of RSD of LIBS spectra under the surface of aluminum with four different microstructures as a function of microstructure cycle (Al)

    图  7  相同周期不同微结构形状铝表面干燥Cr元素的LIBS光谱强度图

    Figure  7.  LIBS spectral intensity of Cr elements on the surface of aluminum with different microstructural shapes but the same cycle under dry conditions

    图  8  不同微结构周期下LIBS光谱强度的RSD随铝表面微结构形状的变化规律(铝)

    Figure  8.  Variation trend of RSD of LIBS spectral intensity with changes in aluminum surface microstructure shapes under different microstructural cycles (aluminum)

  • [1] Zhu Lida, Xue Pengsheng, Lan Qing, et al. Recent research and development status of laser cladding: a review[J]. Optics & Laser Technology, 2021, 138: 106915.
    [2] 周子钧, 姜芙林, 宋鹏芳, 等. 激光熔覆高熵合金涂层的耐腐蚀性能研究进展[J]. 表面技术, 2021, 50(12):257-270

    Zhou Zijun, Jiang Fulin, Song Pengfang, et al. Advances in corrosion resistance of high entropy alloy coatings prepared by laser cladding[J]. Surface Technology, 2021, 50(12): 257-270
    [3] Sarkar A, Mao Xianglei, Chan G C Y, et al. Laser ablation molecular isotopic spectrometry of water for 1D2/1H1 ratio analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 88: 46-53. doi: 10.1016/j.sab.2013.08.002
    [4] Lee D H, Han S C, Kim T H, et al. Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy[J]. Analytical Chemistry, 2011, 83(24): 9456-9461. doi: 10.1021/ac2021689
    [5] Chen Yuqi, Zhang Qian, Li Guan, et al. Laser ignition assisted spark-induced breakdown spectroscopy for the ultra-sensitive detection of trace mercury ions in aqueous solutions[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(12): 1969-1973. doi: 10.1039/c0ja00062k
    [6] Järvinen S T, Saarela J, Toivonen J. Detection of zinc and lead in water using evaporative preconcentration and single-particle laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 86: 55-59. doi: 10.1016/j.sab.2013.04.010
    [7] Metzinger A, Kovács-Széles E, Almási I, et al. An assessment of the potential of laser-induced breakdown spectroscopy (LIBS) for the analysis of cesium in liquid samples of biological origin[J]. Applied Spectroscopy, 2014, 68(7): 789-793. doi: 10.1366/13-07297
    [8] Giakoumaki A, Melessanaki K, Anglos D. Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects[J]. Analytical and Bioanalytical Chemistry, 2007, 387(3): 749-760. doi: 10.1007/s00216-006-0908-1
    [9] Lazic V, Colao F, Fantoni R, et al. Recognition of archeological materials underwater by laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(7/8): 1014-1024.
    [10] Lazic V, Rauschenbach I, Jovicevic S, et al. Laser induced breakdown spectroscopy of soils, rocks and ice at subzero temperatures in simulated martian conditions[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(12): 1546-1556. doi: 10.1016/j.sab.2007.10.006
    [11] 姚胤旭, 邱荣, 万情, 等. 基于激光诱导击穿光谱的基体效应[J]. 强激光与粒子束, 2023, 35:111004 doi: 10.11884/HPLPB202335.230126

    Yao Yinxu, Qiu Rong, Wan Qing, et al. Matrix effect based on laser-induced breakdown spectroscopy[J]. High Power Laser and Particle Beams, 2023, 35: 111004 doi: 10.11884/HPLPB202335.230126
    [12] Lazic V, Jovićević S. Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 101: 288-311. doi: 10.1016/j.sab.2014.09.006
    [13] Jijón D, Costa C. Pencil lead scratches on steel surfaces as a substrate for LIBS analysis of dissolved salts in liquids[J]. Journal of Physics: Conference Series, 2011, 274: 012077. doi: 10.1088/1742-6596/274/1/012077
    [14] Aguirre M A, Legnaioli S, Almodóvar F, et al. Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid–liquid microextraction[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 79/80: 88-93. doi: 10.1016/j.sab.2012.11.011
    [15] Bae D, Nam S H, Han S H, et al. Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 113: 70-78. doi: 10.1016/j.sab.2015.09.005
    [16] De Giacomo A, Koral C, Valenza G, et al. Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level[J]. Analytical Chemistry, 2016, 88(10): 5251-5257. doi: 10.1021/acs.analchem.6b00324
  • 加载中
图(8)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  31
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-29
  • 修回日期:  2024-06-19
  • 录用日期:  2024-06-19
  • 网络出版日期:  2024-06-26

目录

    /

    返回文章
    返回