Study on high-power S-band frequency-controlled microwave source based on injection locking
-
摘要: 针对高功率微波源在深空通信、空间无线能量传输和高功率超导线性加速器等应用中的实时功率控制难题,提出了一种利用注入锁定频率控制输出功率的方法。从理论上分析了注入锁定频控功率源的可行性,并基于双路S波段20 kW高功率磁控管完成了注入锁定频率控制输出功率的实验。实验结果表明,当双路20 kW磁控管的自由振荡频率或注入功率不同时,双管合成的输出功率可通过注入频率实现有效控制,功率控制的范围达到了3 dB,注入锁定的带宽达到了4.0 MHz,输出频谱尖锐,无啁啾颤噪,杂散抑制比为−65.0 dBc@500 kHz。该系统合成输出功率达到了33.9 kW,系统效率约为86.6%。上述研究结果为磁控管在高功率微波领域的应用起到了重大推动作用。Abstract: The high-power microwave source does not satisfy the requirements for deep space communications, wireless power transmission systems and high-power superconducting accelerators because of the real-time power control problems. To break through such limitations, an available power control method based on injection locking is proposed. Theoretical analysis and experiment are carried out to prove the performance of the proposed frequency-controlled microwave source based on dual 20 kW S-band high power magnetrons. The experiment results show that the real-time power control combining via the injecting frequency is achieved, when the injection power or free-running frequency of magnetron is unequal. Simultaneously, the system shows an output power control range of 3.0 dB, a nearly 4.0 MHz injection-locking bandwidth, and a sharp spectrum with an excellent spur suppression ratio of −65.0 dBc@500 kHz. The highest combining power output of 33.9 kW with the system efficiency of 86.6% is also proved. Such researches play an important role in the development of high-power microwave applications.
-
Key words:
- magnetron /
- power combining /
- high power /
- efficiency /
- power control
-
表 1 磁控管的两种初始状态
Table 1. The original states of magnetrons
state free-running
frequency
ω/GHzoutput power
Pmag/kWincident power
of H-T combiner
PH-T/kWcoupling
power
Pξ/Wmutual injection-locking
frequency
ωfinal/GHzoutput
power
Ptotal/kWcombining
efficiency
ηc/%state 1 2.4475 19.9 18.1 107.9 2.4465 32.1 89.4 2.4480 19.3 17.8 156.0 state 2 2.4470 17.4 15.8 200.0 2.4460 25.9 82.4 2.4482 17.6 15.6 183.5 -
[1] 陈潇杰, 刘臻龙, 刘长军. 用于微放电测试的S波段注入锁频磁控管试验研究[J]. 中国空间科学技术, 2017, 37(2):96-102Chen Xiaojie, Liu Zhenlong, Liu Changjun. Experimental research on an S-band inject-locking magnetron for multipactor discharge test[J]. Chinese Space Science and Technology, 2017, 37(2): 96-102 [2] Shinohara N, Matsumoto H, Hashimoto K. Solar Power Station/Satellite (SPS) with phase controlled magnetrons[J]. IEICE Transactions on Electronics, 2003, 86(8): 1550-1555. [3] Padamsee H. The science and technology of superconducting cavities for accelerators[J]. Superconductor Science and Technology, 2001, 14(4): R28-R51. doi: 10.1088/0953-2048/14/4/202 [4] Liu Zhenlong, Chen Xiaojie, Yang Menglin, et al. Experimental studies on a 1-kW high-gain S-band magnetron amplifier with output phase control based on load-pull characterization[J]. IEEE Transactions on Plasma Science, 2018, 46(4): 909-916. doi: 10.1109/TPS.2018.2814598 [5] Liu Zhenlong, Chen Xiaojie, Yang Menglin, et al. Experimental studies on a low power injection-locked continuous wave magnetron[C]//Proceedings of 2017 IEEE MTT-S International Microwave Symposium (IMS). 2017: 451-454. [6] 魏惠月. L波段磁控管锁相及功率合成技术研究[D]. 成都: 电子科技大学, 2011Wei Huiyue. The investigation of L-band phase-locking magnetrons and power combination technique[D]. Chengdu: University of Electronic Science and Technology of China, 2011 [7] Shinohara N, Matsumoto H. Research of magnetron phased array with mutual injection locking for Space Solar Power Satellite/Station[J]. Electrical Engineering in Japan, 2010, 173(2): 21-32. doi: 10.1002/eej.20998 [8] Liu Changjun, Huang Heping, Liu Zhengyu, et al. Experimental study on microwave power combining based on injection-locked 15-kW S-band continuous-wave magnetrons[J]. IEEE Transactions on Plasma Science, 2016, 44(8): 1291-1297. doi: 10.1109/TPS.2016.2565564 [9] 刘臻龙, 唐正明, 刘长军. 20 kW 磁控管频率推移特性的功率合成实验研究[J]. 应用科技, 2022, 49(1):90-93,110Liu Zhenlong, Tang Zhengming, Liu Changjun. Study on the power synthesis system of 20 kW magnetrons based on frequency pushing[J]. Applied Science and Technology, 2022, 49(1): 90-93,110 [10] 党章, 黄建, 邹涌泉, 等. Ku频段高效50 W连续波空间功率合成放大器[J]. 电讯技术, 2009, 49(9): 71-74Dang Zhang, Huang Jian, Zou Yongquan, et al, A high efficient 50 W Ku-band CW spatial power combined amplifier[J]. Telecommunication Engineering, 2009, 49(9): 71-74 [11] Lai Chao, Zhao Chaoxia, Li Kang, et al. Highly efficient microwave power system of magnetrons utilizing frequency-searching injection-locking technique with no phase shifter[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(10): 4424-4432. doi: 10.1109/TMTT.2020.3006488 [12] 张强, 袁成卫, 刘列. 一种T形高功率微波功率合成器[J]. 强激光与粒子束, 2010, 22(10):2369-2372 doi: 10.3788/HPLPB20102210.2369Zhang Qiang, Yuan Chengwei, Liu Lie. T-junction high power microwave power combiner[J]. High Power Laser and Particle Beams, 2010, 22(10): 2369-2372 doi: 10.3788/HPLPB20102210.2369 [13] Adler R. A study of locking phenomena in oscillators[J]. Proceedings of the IRE, 1946, 34(6): 351-357. doi: 10.1109/JRPROC.1946.229930 [14] Shinohara N, Fujiwara J, Matsumoto H. Development of active phased array with phase-controlled magnetrons[C]//Proceedings of the International Symposium on Antennas and Propagation. 2000: 713-716. [15] 杨永辉, 郑贵强. S波段2 kW连续波功率合成技术[J]. 强激光与粒子束, 2007, 19(1):95-98Yang Yonghui, Zheng Guiqiang. 2 kW continuous wave power combining technique in S band[J]. High Power Laser and Particle Beams, 2007, 19(1): 95-98