留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最大后验估计的编码孔图像重建算法

秦玉瑞 朱巴邻 王忠海 周荣 杨朝文

秦玉瑞, 朱巴邻, 王忠海, 等. 基于最大后验估计的编码孔图像重建算法[J]. 强激光与粒子束, 2024, 36: 096004. doi: 10.11884/HPLPB202436.240152
引用本文: 秦玉瑞, 朱巴邻, 王忠海, 等. 基于最大后验估计的编码孔图像重建算法[J]. 强激光与粒子束, 2024, 36: 096004. doi: 10.11884/HPLPB202436.240152
Qin Yurui, Zhu Balin, Wang Zhonghai, et al. Coded-aperture image reconstruction algorithm based on maximum a posteriori estimation[J]. High Power Laser and Particle Beams, 2024, 36: 096004. doi: 10.11884/HPLPB202436.240152
Citation: Qin Yurui, Zhu Balin, Wang Zhonghai, et al. Coded-aperture image reconstruction algorithm based on maximum a posteriori estimation[J]. High Power Laser and Particle Beams, 2024, 36: 096004. doi: 10.11884/HPLPB202436.240152

基于最大后验估计的编码孔图像重建算法

doi: 10.11884/HPLPB202436.240152
详细信息
    作者简介:

    秦玉瑞,yr.qin@foxmail.com

    通讯作者:

    王忠海,zhonghaiwang@scu.edu.cn

  • 中图分类号: TL812+.1

Coded-aperture image reconstruction algorithm based on maximum a posteriori estimation

  • 摘要: 图像重建算法对编码孔伽马相机的成像性能有重要的影响,然而广泛使用的最大似然期望最大化(MLEM)算法无法在较强干扰背景下有效抑制图像中的噪声,当超过一定迭代次数后,图像信噪比会逐渐降低。针对MLEM算法的这一“病态性”问题开展了研究。首先将最大后验估计(MAP)算法应用于编码孔图像重建,接着分析了算法中Gibbs先验函数的邻域大小和权值系数等关键参数的选取方法。然后使用编码孔相机开展了成像实验,对比了MLEM算法与MAP算法对22Na点源的图像重建结果。结果表明,在300~1200次迭代下,MLEM重建图像中出现了明显的噪点,且随着迭代深入图像质量逐渐变差;而MAP重建图像没有出现明显噪点,重建图像的平均梯度相较于MLEM降低了26.45%~49.16%,对比度噪声比(CNR)提升了42.32%~351.07%。另外,对比了3×3和5×5邻域大小时的多点源图像重建结果,结果显示,邻域过小会导致重建图像的热点亮度降低,与理论分析结果一致。最后,分别对比了MLEM与MAP算法在较远距离和较强干扰两种场景下的成像结果,MAP算法均表现出更好的信噪比性能。
  • 图  1  编码孔成像原理示意图

    Figure  1.  Schematic diagram of coding-aperture imaging

    图  2  3倍采样数时的点扩散函数和势函数的邻域权值系数

    Figure  2.  Point spread function and neighbourhood weight coefficients of the potential function at 3 times the samples

    图  3  邻域范围过小会导致热点值降低

    Figure  3.  Too small a neighbourhood range results in lower hotspot values

    图  4  惩罚系数计算方法示意图

    Figure  4.  Schematic diagram of the penalty coefficient calculation method

    图  5  编码孔伽马相机示意图和实物图

    Figure  5.  Schematic and photograph of the coded-aperture gamma camera

    图  6  蒙特卡罗模拟示意图

    Figure  6.  Diagram of Monte Carlo simulation

    图  7  系统响应矩阵(484×961)

    Figure  7.  System response matrix (484×961)

    图  8  伽马源精确成像实验平台

    Figure  8.  Experimental platform for precision imaging of γ sources

    图  9  22Na点源在逐渐递增迭代次数下的MLEM和MAP重建图像

    Figure  9.  MLEM and MAP reconstruction images of 22Na point source with increasing iterations

    图  10  22Na点源在逐渐递增迭代次数下的MLEM与MAP重建图像二维切片

    Figure  10.  2D slices of MLEM and MAP reconstructed images for a 22Na point source with increasing iterations

    图  11  在300、500、800和1200迭代次数下,MLEM和MAP算法重建图像的平均梯度值与CNR值对比

    Figure  11.  Comparison of the mean gradient values and CNRs of reconstructed images using MLEM and MAP algorithms at 300, 500, 800, and 1200 iterations

    图  12  相同参数(δ=0.003,β=0.03,迭代500次)下,使用MLEM、3×3邻域MAP和5×5邻域MAP算法的多点22Na源重建结果对比

    Figure  12.  Comparison of the reconstruction results of multipoint 22Na sources using MLEM, 3×3 neighbourhood MAP and 5×5 neighbourhood MAP algorithms with the same parameters (δ = 0.003, β = 0.03, 500 iterations)

    图  13  对同一个辐射源,MLEM重建图像和分别使用L1、L2、Huber势函数时的MAP重建图像二维切片

    Figure  13.  2D slices of the MLEM reconstructed image and the MAP reconstructed image when using the L1, L2, and Huber potential functions, respectively, for the same radiation source

    图  14  远距离实景成像时,MLEM与MAP算法的成像效果对比

    Figure  14.  Comparison of the effectiveness between the MLEM and the MAP algorithms when imaging at long distances

    图  15  在有干扰源的狭窄环境中,MLEM与MAP算法的成像效果对比

    Figure  15.  Comparison of the effectiveness between the MLEM and MAP algorithms in a confined environment with disturbance sources

  • [1] 昂文胜, 董顺成, 杜永欢, 等. 编码孔径辐射成像定位技术[J]. 辐射研究与辐射工艺学报, 2024, 42: 020801

    Ang Wensheng, Dong Shuncheng, Du Yonghuan, et al. Positioning technique of coded aperture radiation imaging[J]. Journal of Radiation Research and Radiation Processing, 2019, 42: 020801
    [2] 江少恩, 刘忠礼, 郑志坚. 惯性约束聚变实验中编码成像的反投影解码[J]. 强激光与粒子束, 1999, 11(2):210-214

    Jiang Shaoen, Liu Zhongli, Zheng Zhijian. Decoding using back-project algorithm from coded Image in ICF[J]. High Power Laser and Particle Beams, 1999, 11(2): 210-214
    [3] 王蒙蒙. 编码孔径成像技术[J]. 中国新技术新产品, 2011(4):59 doi: 10.3969/j.issn.1673-9957.2011.04.058

    Wang Mengmeng. Coded aperture imaging technology[J]. China New Technology and New Products Magazine, 2011(4): 59 doi: 10.3969/j.issn.1673-9957.2011.04.058
    [4] Carrel F, Khalil R A, Colas S, et al. GAMPIX: A new gamma imaging system for radiological safety and Homeland Security Purposes[C]//2011 IEEE Nuclear Science Symposium Conference Record. 2011: 4739-4744.
    [5] Liu Bin, Lv Huanwen, Xu Hu, et al. A novel coded aperture for γ-ray imaging based on compressed sensing[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1021: 165959. doi: 10.1016/j.nima.2021.165959
    [6] Jeong M, Hammig M D. Comparison of gamma ray localization using system matrixes obtained by either MCNP simulations or ray-driven calculations for a coded-aperture imaging system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161353. doi: 10.1016/j.nima.2018.10.031
    [7] 张锐. 基于人工神经网络的编码孔γ相机成像方法研究[D]. 南京: 南京航空航天大学, 2020

    Zhang Rui. Research on coded aperture gamma camera imaging method based on artificial neural network[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020
    [8] 张斌, 王英, 艾宪芸, 等. 基于约束的MLEM图像重建算法[C]//北京核学会第十届(2014年)核应用技术学术交流会论文集. 2014

    Zhang Bin, Wang Ying, Ai Xianyun, et al. Constraint-based MLEM image reconstruction algorithm[C]//Beijing Nuclear Society 10th (2014) Nuclear Application Technology Symposium. 2014
    [9] 李汉平, 王锋, 艾宪芸. 编码板成像系统MLEM算法优化[J]. 核技术, 2017, 40:020404 doi: 10.11889/j.0253-3219.2017.hjs.40.020404

    Li Hanping, Wang Feng, Ai Xianyun. Algorithm optimization of MLEM in coded aperture imaging system[J]. Nuclear Techniques, 2017, 40: 020404 doi: 10.11889/j.0253-3219.2017.hjs.40.020404
    [10] 侯英伟, 宋玉收, 孙世杰, 等. 编码成像MLEM互补算法的参数优化[J]. 哈尔滨工程大学学报, 2021, 42(12):1799-1804 doi: 10.11990/jheu.202107069

    Hou Yingwei, Song Yushou, Sun Shijie, et al. Parameter optimization of coded aperture imaging based on the MLEM complementary algorithm[J]. Journal of Harbin Engineering University, 2021, 42(12): 1799-1804 doi: 10.11990/jheu.202107069
    [11] Lee T, Lee W. High performance γ-ray imager using dual anti-mask method for the investigation of high-energy nuclear materials[J]. Nuclear Engineering and Technology, 2021, 53(7): 2371-2376. doi: 10.1016/j.net.2021.01.027
    [12] 刘祎, 桂志国, 张权, 等. 一种基于指数型先验分布的正电子发射断层图像重建算法[J]. 中国组织工程研究与临床康复, 2010, 14(52):9760-9763

    Liu Yi, Gui Zhiguo, Zhang Quan, et al. Positron emission tomography image reconstruction algorithm based on an exponential Markov random field prior model[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(52): 9760-9763
    [13] 管永红, 王鹏来, 景越峰. 基于贝叶斯准则的闪光照相图像重建[J]. 强激光与粒子束, 2011, 23(9):2495-2498 doi: 10.3788/HPLPB20112309.2495

    Guan Yonghong, Wang Penglai, Jing Yuefeng. Reconstruction of flash radiographic image based on Bayesian approach[J]. High Power Laser and Particle Beams, 2011, 23(9): 2495-2498 doi: 10.3788/HPLPB20112309.2495
    [14] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1-22. doi: 10.1111/j.2517-6161.1977.tb01600.x
    [15] Shepp L A, Vardi Y. Maximum likelihood reconstruction for emission tomography[J]. IEEE Transactions on Medical Imaging, 1982, 1(2): 113-122. doi: 10.1109/TMI.1982.4307558
    [16] Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography[J]. Journal of Computer Assisted Tomography, 1984, 8(2): 306-316.
    [17] 陈伯显, 张智. 核辐射物理及探测学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2011

    Chen Boxian, Zhang Zhi. Nuclear radiation physics and detection[M]. Harbin: Harbin Engineering University Press, 2011
    [18] 何骞. 基于最大后验概率的PET图像重建算法研究[D]. 长沙: 湖南大学, 2016

    He Qian. The research of PET image reconstruction algorithm based on maximum a posterior[D]. Changsha: Hunan University, 2016
    [19] Levitan E, Herman G T. A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography[J]. IEEE Transactions on Medical Imaging, 1987, 6(3): 185-192. doi: 10.1109/TMI.1987.4307826
    [20] 苏明. 基于MRF先验模型的图像超分辨率重建算法研究[D]. 合肥: 中国科学技术大学, 2011

    Su Ming. Research for super-resolution image reconstruction algorithm based on MRF prior model[D]. Hefei: University of Science and Technology of China, 2011
    [21] Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-286. doi: 10.1109/5.18626
    [22] Besag J. Spatial interaction and the statistical analysis of lattice systems[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1974, 36(2): 192-225. doi: 10.1111/j.2517-6161.1974.tb00999.x
    [23] Tsallis C. Possible generalization of Boltzmann-Gibbs statistics[J]. Journal of Statistical Physics, 1988, 52(1/2): 479-487.
    [24] Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, PAMI-6(6): 721-741. doi: 10.1109/TPAMI.1984.4767596
    [25] Besag J. Towards Bayesian image analysis[J]. Journal of Applied Statistics, 1993, 20(5/6): 107-119.
    [26] Mumcuoglu E Ü, Leahy R M, Cherry S R. Bayesian reconstruction of PET images: methodology and performance analysis[J]. Physics in Medicine & Biology, 1996, 41(9): 1777-1807.
    [27] Green P J. On use of the EM algorithm for penalized likelihood estimation[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1990, 52(3): 443-452. doi: 10.1111/j.2517-6161.1990.tb01798.x
    [28] Gottesman S R, Fenimore E E. New family of binary arrays for coded aperture imaging[J]. Applied Optics, 1989, 28(20): 4344-4352. doi: 10.1364/AO.28.004344
    [29] Agostinelli S, Allison J, Amako K, et al. GEANT4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303.
    [30] Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278. doi: 10.1109/TNS.2006.869826
    [31] 龚胡, 石强. 基于平均梯度的边缘保持指数的图像质量评价[C]//2011年信息技术、服务科学与工程管理国际学术会议论文集. 2011

    Gong Hu, Shi Qiang. Image quality assessment based on the mean gradient of edge preserve index[C]//Proceedings of the 2011 International Conference on Information, Services and Management Engineering. 2011
    [32] 吴鹃. 基于自适应调节下信息特征惩罚的图像修复算法[J]. 国外电子测量技术, 2019, 38(6):33-37

    Wu Juan. Study on image inpainting based on information feature penalty with adaptive adjustment[J]. Foreign Electronic Measurement Technology, 2019, 38(6): 33-37
    [33] Zhu Balin, Wang Zhonghai, Gao Tai, et al. A new contrast-to-noise ratio for image quality characterization of a coded-aperture γ camera[J]. Applied Radiation and Isotopes, 2021, 170: 109592. doi: 10.1016/j.apradiso.2021.109592
  • 加载中
图(15)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  67
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 修回日期:  2024-08-09
  • 录用日期:  2024-08-13
  • 网络出版日期:  2024-07-09
  • 刊出日期:  2024-08-16

目录

    /

    返回文章
    返回