[1] |
王文祥. 微波工程技术[M]. 北京: 国防工业出版社, 2009Wang Wenxiang. Microwave engineering technology[M]. Beijing: National Defense Industry Press, 2009
|
[2] |
令钧溥. Ku波段低磁场同轴渡越时间振荡器的研究[D]. 长沙: 国防科学技术大学, 2014Ling Junpu. Investigation of a Ku-band coaxial transit-time oscillator with low guiding magnetic field[D]. Changsha: National University of Defense Technology, 2014
|
[3] |
宋莉莉. Ka波段高功率同轴渡越时间振荡器的研究[D]. 长沙: 国防科学技术大学, 2018Song Lili. A Ka-band high power coaxial transit-time oscillator[D]. Changsha: National University of Defense Technology, 2018
|
[4] |
Dang Fangchao, Yang Fuxiang, Ge Xingjun, et al. A Ku-band compact disk-beam relativistic klystron oscillator operating at low guiding magnetic field[J]. IEEE Access, 2021, 9: 84170-84177. doi: 10.1109/ACCESS.2021.3079517
|
[5] |
Ling Junpu, Xu Weili, He Juntao, et al. Experimental research on a gigawatt-class Ku-band coaxial transit-time oscillator with low guiding magnetic field[J]. Physics of Plasmas, 2022, 29: 073105. doi: 10.1063/5.0092985
|
[6] |
陈代兵, 刘庆想, 何琥, 等. X波段五腔渡越管振荡器的理论与实验研究[J]. 强激光与粒子束, 2005, 17(1):93-98Chen Daibing, Liu Qingxiang, He Hu, et al. Theoretical and experimental researches on the X-band five-unit transit-time tube oscillator[J]. High Power Laser and Particle Beams, 2005, 17(1): 93-98
|
[7] |
Gao Xingfu, Song Lili, Zhang Haoran, et al. A novel Ka-band coaxial transit time oscillator with internal extraction[J]. Review of Scientific Instruments, 2021, 92: 094704. doi: 10.1063/5.0062144
|
[8] |
Gao Xingfu, Song Lili, Wang Lei, et al. A high-power relativistic Ka-band millimeter-wave coaxial transit time oscillator with stable repetitive operation at low guiding magnetic field[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(3): 1529-1535. doi: 10.1109/TMTT.2023.3307762
|
[9] |
Ling Junpu, He Juntao, Zhang Jiande, et al. A novel Ku-band relativistic transit-time oscillator with three-cavity extractor and distance-tunable reflector[J]. Physics of Plasmas, 2017, 24: 013103. doi: 10.1063/1.4973329
|
[10] |
Ju Jinchuan, Chen Yinghao, Zhou Yunxiao, et al. A coaxial high power output cavity operating in hybrid TM01-TM02 modes for repetitive operation[J]. IEEE Electron Device Letters, 2021, 42(10): 1551-1554. doi: 10.1109/LED.2021.3108536
|
[11] |
邓秉方. 低磁场V波段相对论渡越时间振荡器研究[D]. 长沙: 国防科学技术大学, 2021Deng Bingfang. Investigation of a V-band relativistic transit-time oscillator with low guiding magnetic field[D]. Changsha: National University of Defense Technology, 2021
|
[12] |
Pasour J, Smithe D, Friedman M. The triaxial klystron[J]. AIP Conference Proceedings, 1999, 474(1): 373-385.
|
[13] |
Pasour J, Smithe D, Ludeking L. X-band triaxial klystron[J]. AIP Conference Proceedings, 2003, 691(1): 141-150.
|
[14] |
Xiao Renzhen, Song Zhimin, Yang Dewen, et al. Efficiency enhancement of a klystron-like relativistic backward wave oscillator with local decompression magnetic field[J]. Physics of Plasmas, 2019, 26: 013104. doi: 10.1063/1.5055582
|
[15] |
令钧溥, 贺军涛, 张建德, 等. 行波提取型同轴渡越时间振荡器模拟[J]. 国防科技大学学报, 2013, 35(6):120-125 doi: 10.3969/j.issn.1001-2486.2013.06.021Ling Junpu, He Juntao, Zhang Jiande, et al. Numerical study of a coaxial transit-time oscillator with travelling-wave output structure[J]. Journal of National University of Defense Technology, 2013, 35(6): 120-125 doi: 10.3969/j.issn.1001-2486.2013.06.021
|
[16] |
Ling Junpu, He Juntao, Zhang Jiande, et al. Suppression of the asymmetric competition mode in the relativistic Ku-band coaxial transit-time oscillator[J]. Physics of Plasmas, 2014, 21: 103108. doi: 10.1063/1.4900408
|
[17] |
Song Lili, He Juntao, Ling Junpu, et al. Experimental research on Ka-band coaxial transit-time oscillator[J]. Physics of Plasmas, 2018, 25: 063107. doi: 10.1063/1.5025908
|