留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分段平滑的贝叶斯迭代法重建脉冲X射线能谱

吕泽琦 谢彦召 周熠

吕泽琦, 谢彦召, 周熠. 分段平滑的贝叶斯迭代法重建脉冲X射线能谱[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240200
引用本文: 吕泽琦, 谢彦召, 周熠. 分段平滑的贝叶斯迭代法重建脉冲X射线能谱[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240200
Lü Zeqi, Xie Yanzhao, Zhou Yi. Segment-smoothed Bayesian iterative method to reconstruct pulsed X-ray spectrum[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240200
Citation: Lü Zeqi, Xie Yanzhao, Zhou Yi. Segment-smoothed Bayesian iterative method to reconstruct pulsed X-ray spectrum[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240200

分段平滑的贝叶斯迭代法重建脉冲X射线能谱

doi: 10.11884/HPLPB202436.240200
基金项目: 国家重点研发计划项目(2023YFE0115700)
详细信息
    作者简介:

    吕泽琦,lvzeqi0304@163.com

    通讯作者:

    谢彦召,yzxie@xjtu.edu.cn

  • 中图分类号: TL816

Segment-smoothed Bayesian iterative method to reconstruct pulsed X-ray spectrum

  • 摘要: 吸收法测量脉冲X射线能谱时,测量数据的微小扰动会引起重建能谱的较大波动,甚至出现不符合物理规律的负值。针对测量数据的噪声对脉冲X射线重建能谱影响较大的问题,构建了重建能谱准确性的评估方法,分析了贝叶斯迭代法对包含不同程度噪声干扰的测量数据重建能谱的准确性。通过在贝叶斯迭代法中加入平滑约束条件的方式,降低了噪声对重建能谱的影响。根据预估待测能谱的特征,提出了以能谱峰值为界分段平滑的方法,比较了整体平滑和分段平滑方法的能谱重建效果。多次求解表明,分段平滑贝叶斯迭代法的重建能谱对噪声的敏感度显著下降。设计了基于吸收法的能谱测量系统,分别利用平滑前后的贝叶斯迭代法依据实验测量数据重建能谱,结果表明,分段平滑的贝叶斯迭代法的重建能谱更接近理论能谱,重建效果更好。
  • 图  1  二极管结构

    Figure  1.  Structure of the diode

    图  2  不同能量的光子在探测器上的能量沉积

    Figure  2.  Energy deposition of different energy photons on the detector

    图  3  贝叶斯迭代法在三种初始谱下的重建能谱

    Figure  3.  X-ray spectra unfolded from three initial spectra by the Bayesian iterative method

    图  4  贝叶斯迭代法在三种水平噪声扰动下100次重建能谱(图中每条彩色实线代表1次能谱重建结果)

    Figure  4.  100 reconstructed spectra unfolded with the Bayesian iterative method under three noise levels

    图  5  平滑前后的贝叶斯迭代法重建能谱误差

    Figure  5.  Average error of the spectrum reconstructed using smoothed and unsmoothed Bayesian iterative methods

    图  6  分段平滑的贝叶斯迭代法对包含3种噪声水平测量数据的100次重建能谱(图中每条彩色实线代表1次能谱重建结果)

    Figure  6.  100 reconstructed spectra unfolded with the segmented smoothing Bayesian iterative method under three noise levels

    图  7  能谱测量系统结构

    Figure  7.  Structure of the energy spectrometer

    图  8  依据实验波形的重建能谱

    Figure  8.  Pulsed X-ray spectra reconstructed based on experimental waveforms

    表  1  四种噪声扰动下贝叶斯迭代法重建能谱的平均误差

    Table  1.   Average error of the spectrum reconstructed using the Bayesian iterative method, disturbed by four types of noise

    noise type average error of the reconstructed spectrum $ \overline{ \left\| \Delta\mathit{\boldsymbol{\Phi\boldsymbol{ }}} \right\| _2} $
    1% noise level 5% noise level 10% noise level
    measurement system noise 0.68 1.10 1.53
    photon scattering noise 0.68 1.02 1.42
    environmental noise 0.65 0.81 1.01
    absorption foil thickness error 0.66 0.87 1.31
    下载: 导出CSV

    表  2  不同平滑系数在测量系统底噪扰动下重建能谱的平均误差

    Table  2.   Average error of the spectrum reconstructed with different smoothing coefficients, disturbed by measurement system noise

    reconstructed method average error of the reconstructed spectrum $ \overline{ \left\| \Delta\mathit{\boldsymbol{\Phi}} \right\| _2} $
    1% noise level 5% noise level 10% noise level
    segment smooth 0.748 0.752 0.763
    smoothing coefficient s2=0.05 0.777 0.781 0.825
    smoothing coefficient s2=0.2 0.740 0.754 0.812
    下载: 导出CSV
  • [1] Hill M A. The variation in biological effectiveness of X-rays and gamma rays with energy[J]. Radiation Protection Dosimetry, 2004, 112(4): 471-481. doi: 10.1093/rpd/nch091
    [2] Suda Y, Hariu M, Yamauchi R, et al. Direct energy spectrum measurement of X-ray from a clinical linac[J]. Journal of Applied Clinical Medical Physics, 2021, 22(8): 255-264. doi: 10.1002/acm2.13354
    [3] Hassan A I, Skalej M, Schlattl H, et al. Determination and verification of the x-ray spectrum of a CT scanner[J]. Journal of Medical Imaging, 2018, 5: 013506.
    [4] Duan Xinhui, Wang Jia, Yu Lifeng, et al. CT scanner x-ray spectrum estimation from transmission measurements[J]. Medical Physics, 2011, 38(2): 993-997. doi: 10.1118/1.3547718
    [5] 苏兆锋, 杨海亮, 邱爱慈, 等. 高能脉冲X射线能谱测量[J]. 物理学报, 2010, 59(11):7729-7735 doi: 10.7498/aps.59.7729

    Su Zhaofeng, Yang Hailiang, Qiu Aici, et al. Measurements of energy spectra for high energy pulsed X-ray[J]. Acta Physica Sinica, 2010, 59(11): 7729-7735 doi: 10.7498/aps.59.7729
    [6] Shafahi Z, Sina S, Faghihi R. Comparison of TSVD, MTSVD, and Tikhonov unfolding methods for reconstruction of X-ray spectra[J]. Radiation Physics and Chemistry, 2020, 166: 108437. doi: 10.1016/j.radphyschem.2019.108437
    [7] 杨涛. 硬X射线能谱诊断技术[D]. 合肥: 中国科学技术大学, 2021: 41-72

    Yang Tao. Hard X-ray spectral diagnosis[D]. Hefei: University of Science and Technology of China, 2021: 41-72
    [8] Li Fei, Ge Liangquan, Tang Zhuoyao, et al. Recent developments on XRF spectra evaluation[J]. Applied Spectroscopy Reviews, 2020, 55(4): 263-287. doi: 10.1080/05704928.2019.1580715
    [9] Vanhoof C, Bacon J R, Fittschen U E A, et al. Atomic spectrometry update—a review of advances in X-ray fluorescence spectrometry and its special applications[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(9): 1797-1812. doi: 10.1039/D1JA90033A
    [10] 王栋. 滤波-荧光法测量X光能谱的模拟计算[J]. 核电子学与探测技术, 2009, 29(4):773-778 doi: 10.3969/j.issn.0258-0934.2009.04.017

    Wang Dong. Analog computation of X-ray energy spectrum measurement with filter-fluorescence method[J]. Nuclear Electronics and Detection Technology, 2009, 29(4): 773-778 doi: 10.3969/j.issn.0258-0934.2009.04.017
    [11] 苏兆锋, 孙江, 蔡丹, 等. 200 keV脉冲硬X射线源能谱测量技术[J]. 现代应用物理, 2022, 13: 030204, 030402

    Su Zhaofeng, Sun Jiang, Cai Dan, et al. Energy spectrum measurement for 200 keV pulsed hard X-ray source[J]. Modern Applied Physics, 2022, 13: 030204, 030402
    [12] Endrizzi M, Delogu P, Oliva P. Application of an expectation maximization method to the reconstruction of X-ray-tube spectra from transmission data[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 102: 42-47. doi: 10.1016/j.sab.2014.10.009
    [13] Manciu M, Manciu F S, Vulcan T, et al. Robust megavoltage x-ray spectra estimation from transmission measurements[J]. Journal of X-Ray Science and Technology, 2009, 17(1): 85-99. doi: 10.3233/XST-2009-0214
    [14] Iwasaki S. A new approach for radiation inverse-problems based only on the Bayes' theory[C]//Proceedings of the 9th Workshop on Radiation Detectors and Their Uses. 1995.
    [15] Nauchi Y, Iwasaki S. Convergence of unfolded spectrum with response function for single radiation based on Bayes' theorem[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 735: 437-443. doi: 10.1016/j.nima.2013.09.064
    [16] Kobayashi M, Sato F, Kusaka S, et al. Feasibility study on real-time γ-ray spectrum/dose measurement system[J]. EPJ Web of Conferences, 2017, 153: 07014. doi: 10.1051/epjconf/201715307014
    [17] Carasco C. Coupling gamma ray spectrometry and tomography in a Bayesian frame[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 990: 164985. doi: 10.1016/j.nima.2020.164985
    [18] Nishimura H, Shinohara M, Miyoshi T, et al. Experimental verification of real-time gamma-ray energy spectrum and dose monitor[J]. Applied Radiation and Isotopes, 2022, 185: 110226. doi: 10.1016/j.apradiso.2022.110226
    [19] Mazrou H, Bezoubiri F. Evaluation of a neutron spectrum from Bonner spheres measurements using a Bayesian parameter estimation combined with the traditional unfolding methods[J]. Radiation Physics and Chemistry, 2018, 148: 33-42. doi: 10.1016/j.radphyschem.2018.02.014
    [20] Takagi H, Murata I. Energy spectrum measurement of high power and high energy (6 and 9 MeV) pulsed X-ray source for industrial use[J]. Journal of Radiation Protection and Research, 2016, 41(2): 93-99. doi: 10.14407/jrpr.2016.41.2.093
    [21] Takagi H, Murata I. Development of precise energy spectrum measurement technique for high-power pulsed X-ray sources for industrial use[J]. Journal of Nuclear Science and Technology, 2016, 53(6): 766-773. doi: 10.1080/00223131.2015.1072066
    [22] 王继虎, 马文彦, 翁秀峰, 等. 期望最大法用于脉冲γ射线解谱的理论模拟与分析[J]. 现代应用物理, 2014, 5(3):169-173 doi: 10.3969/j.issn.2095-6223.2014.03.001

    Wang Jihu, Ma Wenyan, Weng Xiufeng, et al. Simulation and analysis of spectrum reconstruction of pulsed γ-rays using expectation maximization method[J]. Modern Applied Physics, 2014, 5(3): 169-173 doi: 10.3969/j.issn.2095-6223.2014.03.001
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  34
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-13
  • 修回日期:  2024-09-03
  • 录用日期:  2024-09-03
  • 网络出版日期:  2024-09-07

目录

    /

    返回文章
    返回