Segment-smoothed Bayesian iterative method to reconstruct pulsed X-ray spectrum
-
摘要: 吸收法测量脉冲X射线能谱时,测量数据的微小扰动会引起重建能谱的较大波动,甚至出现不符合物理规律的负值。针对测量数据的噪声对脉冲X射线重建能谱影响较大的问题,构建了重建能谱准确性的评估方法,分析了贝叶斯迭代法对包含不同程度噪声干扰的测量数据重建能谱的准确性。通过在贝叶斯迭代法中加入平滑约束条件的方式,降低了噪声对重建能谱的影响。根据预估待测能谱的特征,提出了以能谱峰值为界分段平滑的方法,比较了整体平滑和分段平滑方法的能谱重建效果。多次求解表明,分段平滑贝叶斯迭代法的重建能谱对噪声的敏感度显著下降。设计了基于吸收法的能谱测量系统,分别利用平滑前后的贝叶斯迭代法依据实验测量数据重建能谱,结果表明,分段平滑的贝叶斯迭代法的重建能谱更接近理论能谱,重建效果更好。Abstract: Minor discrepancies in the measurement data may lead to significant variations in the reconstructed spectrum when measuring and reconstructing the spectrum by the absorption method. In some cases, the reconstructed spectrum may contain negative values that do not conform to the physical law. To address the issue that noise in the measurement data has a significant effect on the reconstructed spectrum, the segment-smoothed Bayesian iterative method is proposed in this paper. The energy spectrum is reconstructed using the Bayesian iteration method under different levels of noise, and the accuracy and noise sensitivity of the reconstructed spectrum are evaluated. An optimization method, which adds smoothing constraints to the Bayesian iterative method, is proposed to reduce noise interference in the reconstructed spectrum. According to the spectrum characteristics, a two-coefficient segment-smoothing method is proposed with the peak value as the dividing line. The spectrum is reconstructed by segmented smoothing and global smoothing Bayesian iterative methods, respectively. The noise sensitivity of the reconstructed spectrum, unfolded by the segment-smoothed Bayesian iterative method, has been significantly reduced. An energy spectrometer based on the absorption method is developed. The spectrum is reconstructed based on the experimental data using the segment-smoothed Bayesian iterative method and the Bayesian iteration method. The spectrum reconstructed using the segment-smoothed Bayesian iterative method is more consistent with the theoretical spectrum, indicating that this method exhibits superior performance.
-
表 1 四种噪声扰动下贝叶斯迭代法重建能谱的平均误差
Table 1. Average error of the spectrum reconstructed using the Bayesian iterative method, disturbed by four types of noise
noise type average error of the reconstructed spectrum $ \overline{ \left\| \Delta\mathit{\boldsymbol{\Phi\boldsymbol{ }}} \right\| _2} $ 1% noise level 5% noise level 10% noise level measurement system noise 0.68 1.10 1.53 photon scattering noise 0.68 1.02 1.42 environmental noise 0.65 0.81 1.01 absorption foil thickness error 0.66 0.87 1.31 表 2 不同平滑系数在测量系统底噪扰动下重建能谱的平均误差
Table 2. Average error of the spectrum reconstructed with different smoothing coefficients, disturbed by measurement system noise
reconstructed method average error of the reconstructed spectrum $ \overline{ \left\| \Delta\mathit{\boldsymbol{\Phi}} \right\| _2} $ 1% noise level 5% noise level 10% noise level segment smooth 0.748 0.752 0.763 smoothing coefficient s2=0.05 0.777 0.781 0.825 smoothing coefficient s2=0.2 0.740 0.754 0.812 -
[1] Hill M A. The variation in biological effectiveness of X-rays and gamma rays with energy[J]. Radiation Protection Dosimetry, 2004, 112(4): 471-481. doi: 10.1093/rpd/nch091 [2] Suda Y, Hariu M, Yamauchi R, et al. Direct energy spectrum measurement of X-ray from a clinical linac[J]. Journal of Applied Clinical Medical Physics, 2021, 22(8): 255-264. doi: 10.1002/acm2.13354 [3] Hassan A I, Skalej M, Schlattl H, et al. Determination and verification of the x-ray spectrum of a CT scanner[J]. Journal of Medical Imaging, 2018, 5: 013506. [4] Duan Xinhui, Wang Jia, Yu Lifeng, et al. CT scanner x-ray spectrum estimation from transmission measurements[J]. Medical Physics, 2011, 38(2): 993-997. doi: 10.1118/1.3547718 [5] 苏兆锋, 杨海亮, 邱爱慈, 等. 高能脉冲X射线能谱测量[J]. 物理学报, 2010, 59(11):7729-7735 doi: 10.7498/aps.59.7729Su Zhaofeng, Yang Hailiang, Qiu Aici, et al. Measurements of energy spectra for high energy pulsed X-ray[J]. Acta Physica Sinica, 2010, 59(11): 7729-7735 doi: 10.7498/aps.59.7729 [6] Shafahi Z, Sina S, Faghihi R. Comparison of TSVD, MTSVD, and Tikhonov unfolding methods for reconstruction of X-ray spectra[J]. Radiation Physics and Chemistry, 2020, 166: 108437. doi: 10.1016/j.radphyschem.2019.108437 [7] 杨涛. 硬X射线能谱诊断技术[D]. 合肥: 中国科学技术大学, 2021: 41-72Yang Tao. Hard X-ray spectral diagnosis[D]. Hefei: University of Science and Technology of China, 2021: 41-72 [8] Li Fei, Ge Liangquan, Tang Zhuoyao, et al. Recent developments on XRF spectra evaluation[J]. Applied Spectroscopy Reviews, 2020, 55(4): 263-287. doi: 10.1080/05704928.2019.1580715 [9] Vanhoof C, Bacon J R, Fittschen U E A, et al. Atomic spectrometry update—a review of advances in X-ray fluorescence spectrometry and its special applications[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(9): 1797-1812. doi: 10.1039/D1JA90033A [10] 王栋. 滤波-荧光法测量X光能谱的模拟计算[J]. 核电子学与探测技术, 2009, 29(4):773-778 doi: 10.3969/j.issn.0258-0934.2009.04.017Wang Dong. Analog computation of X-ray energy spectrum measurement with filter-fluorescence method[J]. Nuclear Electronics and Detection Technology, 2009, 29(4): 773-778 doi: 10.3969/j.issn.0258-0934.2009.04.017 [11] 苏兆锋, 孙江, 蔡丹, 等. 200 keV脉冲硬X射线源能谱测量技术[J]. 现代应用物理, 2022, 13: 030204, 030402Su Zhaofeng, Sun Jiang, Cai Dan, et al. Energy spectrum measurement for 200 keV pulsed hard X-ray source[J]. Modern Applied Physics, 2022, 13: 030204, 030402 [12] Endrizzi M, Delogu P, Oliva P. Application of an expectation maximization method to the reconstruction of X-ray-tube spectra from transmission data[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 102: 42-47. doi: 10.1016/j.sab.2014.10.009 [13] Manciu M, Manciu F S, Vulcan T, et al. Robust megavoltage x-ray spectra estimation from transmission measurements[J]. Journal of X-Ray Science and Technology, 2009, 17(1): 85-99. doi: 10.3233/XST-2009-0214 [14] Iwasaki S. A new approach for radiation inverse-problems based only on the Bayes' theory[C]//Proceedings of the 9th Workshop on Radiation Detectors and Their Uses. 1995. [15] Nauchi Y, Iwasaki S. Convergence of unfolded spectrum with response function for single radiation based on Bayes' theorem[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 735: 437-443. doi: 10.1016/j.nima.2013.09.064 [16] Kobayashi M, Sato F, Kusaka S, et al. Feasibility study on real-time γ-ray spectrum/dose measurement system[J]. EPJ Web of Conferences, 2017, 153: 07014. doi: 10.1051/epjconf/201715307014 [17] Carasco C. Coupling gamma ray spectrometry and tomography in a Bayesian frame[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 990: 164985. doi: 10.1016/j.nima.2020.164985 [18] Nishimura H, Shinohara M, Miyoshi T, et al. Experimental verification of real-time gamma-ray energy spectrum and dose monitor[J]. Applied Radiation and Isotopes, 2022, 185: 110226. doi: 10.1016/j.apradiso.2022.110226 [19] Mazrou H, Bezoubiri F. Evaluation of a neutron spectrum from Bonner spheres measurements using a Bayesian parameter estimation combined with the traditional unfolding methods[J]. Radiation Physics and Chemistry, 2018, 148: 33-42. doi: 10.1016/j.radphyschem.2018.02.014 [20] Takagi H, Murata I. Energy spectrum measurement of high power and high energy (6 and 9 MeV) pulsed X-ray source for industrial use[J]. Journal of Radiation Protection and Research, 2016, 41(2): 93-99. doi: 10.14407/jrpr.2016.41.2.093 [21] Takagi H, Murata I. Development of precise energy spectrum measurement technique for high-power pulsed X-ray sources for industrial use[J]. Journal of Nuclear Science and Technology, 2016, 53(6): 766-773. doi: 10.1080/00223131.2015.1072066 [22] 王继虎, 马文彦, 翁秀峰, 等. 期望最大法用于脉冲γ射线解谱的理论模拟与分析[J]. 现代应用物理, 2014, 5(3):169-173 doi: 10.3969/j.issn.2095-6223.2014.03.001Wang Jihu, Ma Wenyan, Weng Xiufeng, et al. Simulation and analysis of spectrum reconstruction of pulsed γ-rays using expectation maximization method[J]. Modern Applied Physics, 2014, 5(3): 169-173 doi: 10.3969/j.issn.2095-6223.2014.03.001